The conversion of an aldehyde to a terminal alkyne by means of a one-carbon chain extension is a key reaction in organic synthesis. By using dimethyl 1-diazo-2-oxopropylphosphonate, the Bestmann-Ohira reagent, the transformation can be achieved in one pot. A reliable, convenient sequence for the preparation of the Bestmann-Ohira reagent is described.
Two variants of the enzyme family pyruvate:ferredoxin oxidoreductase (PFOR), derived from the anaerobic sulfate‐reducing bacterium Desulfovibrio africanus and the extremophilic crenarchaeon Sulfolobus acidocaldarius, respectively, were evaluated for their capacity to fixate CO2 in vitro. PFOR reversibly catalyzes the conversion of acetyl‐CoA and CO2 to pyruvate using ferredoxin as redox partner. The oxidative decarboxylation of pyruvate is thermodynamically strongly favored, and most previous studies only considered the oxidative direction of the enzyme. To assay the pyruvate synthase function of PFOR during reductive carboxylation of acetyl‐CoA is more challenging and requires to maintain the reaction far from equilibrium. For this purpose, a biochemical assay was established where low‐potential electrons were introduced by photochemical reduction of EDTA/deazaflavin and the generated pyruvate was trapped by chemical derivatization with semicarbazide. The product of CO2 fixation could be detected as pyruvate semicarbazone by HPLC‐MS. In a combinatorial approach, both PFORs were tested with ferredoxins from different sources. The pyruvate semicarbazone product could be detected with low‐potential ferredoxins of the green sulfur bacterium Chlorobium tepidum and of S. acidocaldarius whereas CO2 fixation was not supported by the native ferredoxin of D. africanus. Methylviologen as an artificial electron carrier also allowed CO2 fixation. For both enzymes, the results are the first demonstration of CO2 fixation in vitro. Both enzymes exhibited high stability in the presence of oxygen during purification and storage. In conclusion, the employed PFOR enzymes in combination with non‐native ferredoxin cofactors might be promising candidates for further incorporation in biocatalytic CO2 conversion.
Enzymes
EC1.2.7.1. Pyruvate:Ferredoxin Oxidoreductase
The ''Garner'' aldehyde has been used as a common intermediate for the preparation of the corresponding alkyne 7 and the alkenylboronic esters 12−16 (24−80%). Diastereoselective cyclopropanation afforded cyclopropylboronic esters 17−20 (60−84%, dr 22:78 to 92:8), the configurations of which were determined by chemical correlation (cyclopropanols 22), X-ray structural analysis (of 21a), and characteristic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.