Thermal history modelling based on zircon‐ and apatite fission track and apatite (U–Th)/He data constrain and refine the near‐surface exhumation of the south‐eastern Tauern Window (Penninic units) and neighbouring Austroalpine basement units in the Eastern Alps. Fast exhumation on both sides of the Penninic/Austroalpine boundary coincides with a period of lateral extrusion and tectonic denudation of the Penninic units in Miocene time (22–12 Ma). The jump to older ages occurs within the Austroalpine unit along the Polinik fault, which therefore defines the boundary between the tectonically denuded units and the hangingwall at that time. According to the different (U–Th)/He ages between the Penninic Hochalm‐ and Sonnblick Domes we demonstrate a differential cooling history of these two domes in the latest Miocene and early Pliocene.
[1] This study comprises a reassessment of the classical model of lateral extrusion in the Eastern Alps by using recently published geochronological data, sedimentary ages from intramontane basins, ages and distribution of magmatic rocks, and information from seismic profiles. Extrusion-related faulting continuously propagated from the western toward the central eastern part of the Eastern Alps during Oligocene to Middle Miocene times. This is confined by oblique convergence between the Adriatic and European plates. During Middle Miocene times, extrusion became not only lateral in terms of parallel to the trend of the Eastern Alps, but was characterized by a displacement vector at a high angle to the strike of the orogen. This resulted in the exhumation of the Schladming and Pohorje blocks that were exhumed within extensional bridges at the northern and southern terminations of the Pöls-Lavanttal fault system, respectively. From Middle Miocene to recent times, extrusion was controlled by overall extension between the Dinaric and Carpathian subduction zones. The influence of north directed compression triggered by the northward moving Adriatic plate diminished, and the influence of the retreating Carpathian subduction zone increased. This gave rise to Miocene volcanism that is exclusively found east of the Dinaric subduction zone. We therefore consider that lateral extrusion in the Eastern Alps can be subdivided into distinct tectonic phases, with less pronounced eastward extension-related displacement between Late Oligocene and Middle Miocene times. As soon as the Eastern Alps passed the Dinaric subduction zone, the entire domain became highly extensive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.