Sensible DNA: An electrochemical DNA assay based on specific Salmonella spp. capture probes and enzyme labeling with alkaline phosphatase was optimized by using a 48-electrode microarray and scanning electrochemical microscopy (SECM). SECM was further used to evaluate potential amplification strategies due to redox cycling. Due to insufficient detection limits and selectivity, electrochemical DNA sensors are not yet used as everyday tools in diagnostics. Here, we present an electrochemical DNA assay that is based on specific Salmonella spp. capture probes. Our optimization strategies and the specific features of related electrochemical DNA sensor arrays, which are comprised of a chip with 48 gold electrodes, are also described. A ssDNA monolayer is formed by chemisorption of the thiol-modified capture strand on the different gold electrodes of the array after spotting with a needle spotter. The assay parameters were optimized for the use of minimum amounts of sample and reagents and short assay times. Scanning electrochemical microscopy (SECM) has been used to visualize the local activity of an enzyme label used for amplified hybridization detection at high lateral resolution. The potential of SECM to further amplify the sensor signal by means of redox cycling is demonstrated by using single-stranded DNA capture probe modified gold microelectrodes as SECM tips. The detection limit of the proposed DNA sensor is shown to be in the femtomolar range without redox cycling amplification.
An electrochemical method for the detection of Epstein-Barr virus (EBV) infections is described. The method relies on an immunoassay with electrochemical read-outs based on recombinant antigens. The antigens are immobilised on an Au electrode surface and used to complementarily bind antibodies from serum samples found during different stages of infection with EBV. Thiol chemistry under formation of self-assembled monolayers functions as a means to immobilise the antigens at the Au electrodes. A reporter system consisting of a secondary antibody labelled with alkaline phosphatase is used for electrochemical detection. The feasibility of the assay design is demonstrated and the assay performance is tested against the current gold standard in EBV detection. Close correlation is obtained for the results found for the developed electrochemical immunoassay and a standard line assay. Moreover, the electrochemical immunoassay is combined with a nanoporous electrode system allowing signal amplification by means of redox recycling. An amplification factor of 24 could be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.