Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental consequences on the analysis precision and performance. Previous work on dynamic determinacy analysis has demonstrated how information about program expressions that always resolve to a fixed value in some call context may lead to significant scalability improvements of static analysis for such code. We present a static dataflow analysis for JavaScript that infers and exploits determinacy information on-the-fly, to enable analysis of some of the most complex parts of jQuery. The analysis combines selective context and path sensitivity, constant propagation, and branch pruning, based on a systematic investigation of the main causes of analysis imprecision when using a more basic analysis. The techniques are implemented in the TAJS analysis tool and evaluated on a collection of small programs that use jQuery. Our results show that the proposed analysis techniques boost both precision and performance, specifically for inferring type information and call graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.