Increasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally impaired, displaying perturbed vocalization behavior. cbp haploinsufficiency or genetic knockdown with siRNAs inhibited differentiation of embryonic cortical precursors into all three neural lineages, coincident with decreased CBP binding and histone acetylation at promoters of neuronal and glial genes. Inhibition of histone deacetylation rescued these deficits. Moreover, CBP phosphorylation by atypical protein kinase C zeta was necessary for histone acetylation at neural gene promoters and appropriate differentiation. These data support a model in which environmental cues regulate CBP activity and histone acetylation to control neural precursor competency to differentiate, and indicate that cbp haploinsufficiency disrupts this mechanism, thereby likely causing cognitive dysfunction in RTS.
The mechanisms that regulate symmetric, proliferative divisions versus asymmetric, neurogenic divisions of mammalian neural precursors are still not well understood. We found that Lfc (Arhgef2), a Rho-specific guanine nucleotide exchange factor that interacts with spindle microtubules, and its negative regulator Tctex-1 (Dynlt1) determine the genesis of neurons from precursors in the embryonic murine cortex. Specifically, genetic knockdown of Arhgef2 in cortical precursors either in culture or in vivo inhibited neurogenesis and maintained cells as cycling radial precursors. Conversely, genetic knockdown of Dynlt1 in radial precursors promoted neurogenesis and depleted cycling cortical precursors. Coincident silencing of these two genes indicated that Tctex-1 normally inhibits the genesis of neurons from radial precursors by antagonizing the proneurogenic actions of Lfc. Moreover, Lfc and Tctex-1 were required to determine the orientation of mitotic precursor cell divisions in vivo. Thus, Lfc and Tctex-1 interact to regulate cortical neurogenesis, potentially by regulating mitotic spindle orientation.
Adult neural stem cells (NSCs) are involved in regulating mammalian behavior and are controlled by diverse external stimuli. Improved understanding of the physical location of NSCs and the microenvironmental cues that regulate their behavior, which combine to define the NSC "home," or niche, may reveal how to control their function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.