Border regions have been implicated as important hot spots of malaria transmission, particularly in Latin America, where free movement rights mean that residents can cross borders using just a national ID. Additionally, rural livelihoods largely depend on short-term migrants traveling across borders via the Amazon’s river networks to work in extractive industries, such as logging. As a result, there is likely considerable spillover across country borders, particularly along the border between Peru and Ecuador. This border region exhibits a steep gradient of transmission intensity, with Peru having a much higher incidence of malaria than Ecuador. In this paper, we integrate 13 years of weekly malaria surveillance data collected at the district level in Peru and the canton level in Ecuador, and leverage hierarchical Bayesian spatiotemporal regression models to identify the degree to which malaria transmission in Ecuador is influenced by transmission in Peru. We find that increased case incidence in Peruvian districts that border the Ecuadorian Amazon is associated with increased incidence in Ecuador. Our results highlight the importance of coordinated malaria control across borders.
BackgroundMalaria in Peru is concentrated in the Amazon region, especially in Loreto, and transmission is focused in rural and peri-urban communities. The government has approved a malaria elimination plan with a community approach and seeks to reduce the risk of transmission through preventive interventions, but asymptomatic and low-parasite-density infections are challenges for disease control and elimination. IgG antibodies play a critical role in combating infection through their ability to reduce parasitaemia and clinical symptoms. In particular, IgG subclasses have important roles in controlling malaria disease and may provide new insight into the development of malaria control strategies and understanding of malaria transmission. Through the use of excreted-secreted antigens from Plasmodium falciparum, were evaluated the responses of the four IgG subclasses in symptomatic and asymptomatic malarial infections.ResultsHigher levels of whole IgG were observed in asymptomatic carriers (P < 0.05). IgG3 and IgG1 were the most prevalent subclasses and did not show differences in their antibody levels in either type of carrier. All symptomatic carriers were positive for IgG4, and the presence of IgG3 and IgG2 were correlated with protection against parasitaemia. IgG2 showed lower prevalence and antibody titers in comparison to other subclasses.ConclusionsThis is the first study that characterizes the IgG subclass response in the Peruvian Amazon, and these results show that even in populations from regions with low malaria transmission, a certain degree of naturally acquired immunity can develop when the right antibody subclasses are produced. This provides important insight into the potential mechanisms regulating protective immunity.Electronic supplementary materialThe online version of this article (10.1186/s12936-018-2471-6) contains supplementary material, which is available to authorized users.
El cálculo de tamaño de muestra es un aspecto esencial del diseño de estudios cuantitativos. Un adecuado tamaño de muestra nos permite determinar cuál es la mínima cantidad de participantes necesarios para probar nuestra hipótesis de interés. De esta manera, podemos reducir costos, maximizar el uso de nuestros recursos de investigación y garantizar la factibilidad del estudio. Contradictoriamente, a pesar de su relevancia muy pocos investigadores dominan esta habilidad. Esta revisión tiene por objeto revisar los conceptos básicos para realizar un cálculo de tamaño de muestra y compartir códigos de Stata y R específicamente diseñados para facilitar estos cálculos.
Objetivos. Evaluar la variación de los perfiles hematológicos antes, durante y después del tratamiento de pacientes infectados con malaria no complicada por Plasmodium vivax (Pv) y P. falciparum (Pf) en una población de la región Loreto. Materiales y métodos. El estudio se realizó entre 2010 y 2012, en Zungarococha (Iquitos). Los 425 participantes tuvieron tres visitas (visita 1-día 0-antes del tratamiento, visita 2-día 7-durante tratamiento, visita 3-día 28-después del tratamiento), hemograma completo, diagnóstico microscópico y molecular (PCR). Resultados. En la primera visita, se encontraron 93 (21,9%) positivos a Pv y 34 (8,0%) a Pf. Todos los positivos mostraron una reducción en los indicadores hematológicos de hematocrito, recuento de glóbulos blancos (RGB), neutrófilos abastonados y segmentados, eosinófilos y plaquetas (p<0.001) en comparación con el grupo negativo. Se encontró un porcentaje mayor de neutrófilos abastonados en Pf y de neutrófilos segmentados en Pv comparado al grupo negativo. Se observó variaciones en los perfiles hematológicos después del tratamiento para ambas especies, los neutrófilos abastonados disminuyeron, las plaquetas aumentaron, los eosinófilos se incrementaron al día 7 y decaen el día 28, el hematocrito y los neutrófilos segmentados disminuyeron al día 7 y se normalizaronel día 28. Las diferencias entre especies en el tiempo mostraron una disminución diaria de neutrófilos abastonados en infectados con Pv que en Pf. Conclusiones. El perfil hematológico en pacientes positivos a malaria no complicada varía en el tiempo durante y después del tratamiento. Estos son indicadores de la progresión de la enfermedad y ayudan en la vigilancia terapéutica de pacientes infectados con Plasmodium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.