Antibodies are a critical part of the immune system, having the function of directly neutralising or tagging undesirable objects (the antigens) for future destruction. Being able to predict which amino acids belong to the paratope, the region on the antibody which binds to the antigen, can facilitate antibody design and contribute to the development of personalised medicine. The suitability of deep neural networks has recently been confirmed for this task, with Parapred outperforming all prior models. Our contribution is twofold: first, we significantly outperform the computational efficiency of Parapred by leveragingà trous convolutions and self-attention. Secondly, we implement cross-modal attention by allowing the antibody residues to attend over antigen residues. This leads to new state-of-the-art results on this task, along with insightful interpretations.
Value Iteration Networks (VINs) have emerged as a popular method to perform implicit planning within deep reinforcement learning, enabling performance improvements on tasks requiring long-range reasoning and understanding of environment dynamics. This came with several limitations, however: the model is not explicitly incentivised to perform meaningful planning computations, the underlying state space is assumed to be discrete, and the Markov decision process (MDP) is assumed fixed and known. We propose eXecuted Latent Value Iteration Networks (XLVINs), which combine recent developments across contrastive self-supervised learning, graph representation learning and neural algorithmic reasoning to alleviate all of the above limitations, successfully deploying VIN-style models on generic environments. XLVINs match the performance of VIN-like models when the underlying MDP is discrete, fixed and known, and provide significant improvements to model-free baselines across three general MDP setups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.