Cardiac amyloidosis is a restrictive cardiomyopathy determined by the accumulation of amyloid, which is represented by misfolded protein fragments in the cardiac extracellular space. The main classification of systemic amyloidosis is determined by the amyloid precursor proteins causing a very heterogeneous disease spectrum, but the main types of amyloidosis involving the heart are light chain (AL) and transthyretin amyloidosis (ATTR). AL, in which the amyloid precursor is represented by misfolded immunoglobulin light chains, can involve almost any system carrying the worst prognosis among amyloidosis patients. This has however dramatically improved in the last few years with the increased usage of the novel therapies such as proteasome inhibitors and haematopoietic cell transplantation, in the case of timely diagnosis and initiation of treatment. The treatment for AL is directed by the haematologist working closely with the cardiologist when there is a significant cardiac involvement. Transthyretin (TTR) is a protein that is produced by the liver and is involved in the transportation of thyroid hormones, especially thyroxine and retinol binding protein. ATTR results from the accumulation of transthyretin amyloid in the extracellular space of different organs and systems, especially the heart and the nervous system. Specific therapies for ATTR act at various levels of TTR, from synthesis to deposition: TTR tetramer stabilization, oligomer aggregation inhibition, genetic therapy, amyloid fibre degradation, antiserum amyloid P antibodies, and antiserum TTR antibodies. Treatment of systemic amyloidosis has dramatically evolved over the last few years in both AL and ATTR, improving disease prognosis. Moreover, recent studies revealed that timely treatment can lead to an improvement in clinical status and in a regression of amyloid myocardial infiltration showed by imaging, especially by cardiac magnetic resonance, in both AL and ATTR. However, treating cardiac amyloidosis is a complex task due to the frequent association between systemic congestion and low blood pressure, thrombo-embolic and haemorrhagic risk balance, patient frailty, and generally poor prognosis. The aim of this review is to describe the current state of knowledge regarding cardiac amyloidosis therapy in this constantly evolving field, classified as treatment of the cardiac complications of amyloidosis (heart failure, rhythm and conduction disturbances, and thrombo-embolic risk) and the disease-modifying therapy.
Background: In Romania, 23 patients have been diagnosed with hereditary transthyretin amyloidosis (ATTRh), 18 of whom have the Glu54Gln mutation. This retrospective cohort included all patients with Glu54Gln-mutated ATTRh who were diagnosed in Romania from 2005 to 2018. Results: Of 18 patients, 10 were symptomatic, five were asymptomatic carriers and three died during the study. All originated from NorthEast Romania. Median age at symptom onset was 45 years; median age at death was 51 years. All patients had cardiac involvement, including changes in biomarkers (mean N-terminal-pro B-type natriuretic peptide: 2815.6 pg/ml), electrocardiography (15% atrial fibrillation, 38% atrioventricular block, 31% right bundle block), and echocardiography (mean interventricular septum: 16 mm, mean left ventricular ejection fraction: 49%). Scintigraphy showed myocardial radiotracer uptake in all patients. In addition, 92% of patients had polyneuropathy at diagnosis and 53% had carpal tunnel syndrome; 69% exhibited orthostatic hypotension and 31% suffered from diarrhea. No renal or liver involvement was observed. Conclusions: This is the largest Glu54Gln-mutated ATTRh cohort diagnosed to date, and to our knowledge the first describing this variant worldwide. Clinical features of this variant are early onset, neurological and cardiac involvement, aggressive disease progression and short survival. Early diagnosis and therapeutic intervention have potential to improve prognosis in ATTRh.
Rationale: Muscle pseudohypertrophy is a rare manifestation of light chain amyloidosis (AL) amyloidosis. Patient concerns: A 63-year-old woman presented with a 2-year history of progressive asthenia, macroglossia, dysphonia, cachexia, hypotension, paresthesia, and lower limb muscle hypertrophy. Diagnosis: Free serum lambda light chains were increased, and fat pad biopsy demonstrated Congo red-positive deposits. Additionally, electromyography showed a myopathic pattern, whereas muscle biopsy revealed amyloid deposits. A diagnosis of λAL with cardiac, renal, nervous system, and skeletal muscle involvement was established. Interventions and outcomes: The patient received 3 subsequent lines of therapy over the following 23 months, with very slow hematological remission followed by resolution of organ dysfunction. Lessons: Despite its rarity, muscle involvement should be considered in patients diagnosed with AL amyloidosis associated with unexplained muscle hypertrophy or weakness associated with macroglossia or elevated troponin T levels in the absence of clear cardiac involvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.