An original application of the Laser-Induced-Incandescence (LII) technique was set up to quantify soot particles inside the combustion chamber of an optically accessible Direct-Injection Diesel engine. Planar soot concentration and local particle diameter were measured for several Exhaust Gas Recirculation (EGR) rates. The impact of the injection timing on the soot evolution for the highest EGR rate was also studied. Based on the analysis of LII images it is shown that the planar distribution of soot becomes more and more uniform across the combustion chamber and globally the soot maximum more important with the EGR rates increase. High EGR rates, combined with a retarded start of injection may lead to lower soot production inside the combustion chamber. Comparison between exhaust and in-cylinder soot concentration highlights the effect of post-combustion oxidation on the particle-emissions amount.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.