In this study, the effect of in vitro endotoxin tolerance on LPS-induced mitogen-activated protein kinase activation, transcription factor induction, and cytokine, chemokine, and Toll-like receptor (TLR) 2 and 4 gene expression, as well as the involvement of TNF and IL-1 signaling pathways in tolerance, were examined. Pretreatment of mouse macrophages with LPS inhibited phosphorylation of the extracellular signal-regulated kinases, c-Jun NH2-terminal kinases, and p38 kinase; degradation of I-κBα (inhibitory protein that dissociates from NF-κB) and I-κBβ; and activation of the transcription factors NF-κB and AP-1 in response to subsequent LPS stimulation. These changes were accompanied by suppression of LPS-induced expression of mRNA for GM-CSF, IFN-γ-inducible protein-10, KC, JE/monocyte chemoattractant protein-1, macrophage-inflammatory protein-1β, and macrophage-inflammatory protein-2, with concurrent inhibition of chemokine secretion. In contrast to control cells, endotoxin-tolerant macrophages exhibited an increased basal level of TLR2 mRNA, and failed to increase levels of TLR2 mRNA or to down-regulate TLR4 gene expression upon restimulation with LPS. As judged by transcription factor activation, LPS and IL-1 were found to induce a state of cross-tolerance against each other, while no such reciprocal effect was seen for LPS and TNF-α. In addition, macrophages from TNFR I/II double knockout mice were LPS tolerizable, and blocking of endogenous TNF-α with TNFR-Fc fusion protein did not affect the capacity of LPS to tolerize macrophages. These data extend our understanding of LPS-signaling mechanisms that are inhibited in endotoxin-tolerized macrophages and suggest that endotoxin tolerance might result from impaired expression and/or functions of common signaling intermediates involved in LPS and IL-1 signaling.
Toll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-α, or IFN-γ induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-γ act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-κB dependent. LPS and IFN-γ also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-α, or IFN-γ. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-γ, in inducing shock associated with Gram-negative sepsis.
In this study, tolerance induction by preexposure of murine macrophages to Toll-like receptor (TLR)2 and TLR4 agonists was revisited, focusing on the major signaling components associated with NF-κB activation. Pretreatment of macrophages with a pure TLR4 agonist (protein-free Escherichia coli (Ec) LPS) or with TLR2 agonists (Porphyromonas gingivalis LPS or synthetic lipoprotein Pam3Cys) led to suppression of TNF-α secretion, IL-1R-associated kinase-1, and IκB kinase (IKK) kinase activities, c-jun N-terminal kinase, and extracellular signal-regulated kinase phosphorylation, and to suppression of NF-κB DNA binding and transactivation upon challenge with the same agonist (TLR4 or TLR2 “homotolerance,” respectively). Despite inhibited NF-κB DNA binding, increased levels of nuclear NF-κB were detected in agonist-pretreated macrophages. For all the intermediate signaling elements, heterotolerance was weaker than TLR4 or TLR2 homotolerance with the exception of IKK kinase activity. IKK kinase activity was unperturbed in heterotolerance. TNF-α secretion was also suppressed in P. gingivalis LPS-pretreated, Ec LPS-challenged cells, but not vice versa, while Pam3Cys and Ec LPS did not induce a state of cross-tolerance at the level of TNF-α. Experiments designed to elucidate novel mechanisms of NF-κB inhibition in tolerized cells revealed the potential contribution of IκBε and IκBξ inhibitory proteins and the necessity of TLR4 engagement for induction of tolerance to Toll receptor-IL-1R domain-containing adapter protein/MyD88-adapter-like-dependent gene expression. Collectively, these data demonstrate that induction of homotolerance affects a broader spectrum of signaling components than in heterotolerance, with selective modulation of specific elements within the NF-κB signaling pathway.
TLRs activate immune responses by sensing microbial structures such as bacterial LPS, viral RNA, and endogenous "danger" molecules released by damaged host cells. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of NF-kappaB and MAPKs and production of proinflammatory cytokines. TLR4-mediated signaling also leads to rapid activation of PI3K, one of a family of kinases involved in regulation of cell growth, apoptosis, and motility. LPS stimulates phosphorylation of Akt, a downstream target of PI3K, in wild-type (WT) mouse macrophages. LPS-induced phosphorylation of Akt serine 473 was blunted in MyD88(-/-) macrophages and was completely TLR4-dependent. MyD88 and p85 were shown previously to co-immunoprecipitate, and a YXXM motif within the Toll-IL-1 resistance (TIR) domain of MyD88 was suggested to be important for this interaction. To test this hypothesis, we compared expressed MyD88 variants with mutations within the YXXM motif or lacking the TIR domain or death domain and measured their capacities to bind PI3K p85, MyD88, and TLR4 by co-immunoprecipitation analyses. The YXXM --> YXXA mutant MyD88 bound more strongly to p85, TLR4, and WT MyD88 than the other variants, yet was significantly less active than WT MyD88, suggesting that sustained interaction of MyD88/PI3K with the TLR4 intracellular "signaling platform" negatively regulates signaling. We propose a hypothetical model in which sustained PI3K activity at the membrane limits the availability of the PI3K substrate, thereby negatively regulating signaling.
Prior exposure to LPS induces a transient state of cell refractoriness to subsequent LPS restimulation, known as endotoxin tolerance. Induction of LPS tolerance has been reported to correlate with decreased cell surface expression of the LPS receptor complex, Toll-like receptor 4 (TLR4)/MD-2. However, other results have underscored the existence of mechanisms of LPS tolerance that operate downstream of TLR4/MD-2. In the present study we sought to delineate further the molecular basis of LPS tolerance by examining the TLR4 signaling pathway in endotoxin-tolerant cells. Pretreatment of human monocytes with LPS decreased LPS-mediated NF-κB activation, p38 mitogen-activated protein kinase phosphorylation, and TNF-α gene expression, documenting the induction of endotoxin tolerance. FACS and Western blot analyses of LPS-tolerant monocytes showed increased TLR2 expression, whereas TLR4 expression levels were not affected. Comparable levels of mRNA and protein for myeloid differentiation factor 88 (MyD88), IL-1R-associated kinase 1 (IRAK-1), and TNFR-associated factor-6 were found in normal and LPS-tolerant monocytes, while MD-2 mRNA expression was slightly increased in LPS-tolerant cells. LPS induced the association of MyD88 with TLR4 and increased IRAK-1 activity in medium-pretreated cells. In LPS-tolerant monocytes, however, MyD88 failed to be recruited to TLR4, and IRAK-1 was not activated in response to LPS stimulation. Moreover, endotoxin-tolerant CHO cells that overexpress human TLR4 and MD-2 also showed decreased IRAK-1 kinase activity in response to LPS despite the failure of LPS to inhibit cell surface expression of transfected TLR4 and MD-2 proteins. Thus, decreased TLR4-MyD88 complex formation with subsequent impairment of IRAK-1 activity may underlie the LPS-tolerant phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.