Intrusion detection and prevention are two of the most important issues to solve in network security infrastructure. Intrusion detection systems (IDSs) protect networks by using patterns to detect malicious traffic. As attackers have tried to dissimulate traffic in order to evade the rules applied, several machine learning-based IDSs have been developed. In this study, we focused on one such model involving several algorithms and used the NSL-KDD dataset as a benchmark to train and evaluate its performance. We demonstrate a way to create adversarial instances of network traffic that can be used to evade detection by a machine learning-based IDS. Moreover, this traffic can be used for training in order to improve performance in the case of new attacks. Thus, a generative adversarial network (GAN)—i.e., an architecture based on a deep-learning algorithm capable of creating generative models—was implemented. Furthermore, we tested the IDS performance using the generated adversarial traffic. The results showed that, even in the case of the GAN-generated traffic (which could successfully evade IDS detection), by using the adversarial traffic in the testing process, we could improve the machine learning-based IDS performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.