The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value taken by it at any point belonging to that line and a bounded domain Ω . He proved that the functions defined by ordinary Dirichlet series are quasi-periodic in their half plane of uniform convergence. We realized that the existence of the domain Ω is not necessary and that the quasi-periodicity is related to the denseness property of those functions which we have studied in a previous paper. Hence, the purpose of our research was to prove these two facts. We succeeded to fulfill this task and more. Namely, we dealt with the quasi-periodicity of general Dirichlet series by using geometric tools perfected by us in a series of previous projects. The concept has been applied to the whole complex plane (not only to the half plane of uniform convergence) for series which can be continued to meromorphic functions in that plane. The question arise: in what conditions such a continuation is possible? There are known examples of Dirichlet series which cannot be continued across the convergence line, yet there are no simple conditions under which such a continuation is possible. We succeeded to find a very natural one.
In this paper, we give examples of cyclic operators defined on various types of sets, in order to illustrate some results in the extremely rich literature following the seminal paper [Kirk, W. A., Srinivasan, P. S. and Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), No. 1, 79 – 89]. All examples which are presented enrich the list of cyclic operators and give a subject to future studies of this type of operators.
In this paper we present an extension of fixed point theorem for self mappings on metric spaces endowed with a graph and which satisfies a Bianchini contraction condition. We establish conditions which ensure the existence of fixed point for a non-self Bianchini contractions T : K ⊂ X → X that satisfy Rothe’s boundary condition T (∂K) ⊂ K.
In this paper, we will obtain some graphic representations for the polynomial approximation of particular bivariate functions. We present three examples of approximations by Stancu operator. The selected functions include an example of production function. These could be further used for teaching purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.