Lyapunov functions for classical SIR, SIRS, and SIS epidemiological models are introduced. Global stability of the endemic equilibrium states of the models is thereby established
In this paper we consider the impact of the form of the non-linearity of the infectious disease incidence rate on the dynamics of epidemiological models. We consider a very general form of the non-linear incidence rate (in fact, we assumed that the incidence rate is given by an arbitrary function f (S, I, N) constrained by a few biologically feasible conditions) and a variety of epidemiological models. We show that under the constant population size assumption, these models exhibit asymptotically stable steady states. Precisely, we demonstrate that the concavity of the incidence rate with respect to the number of infective individuals is a sufficient condition for stability. If the incidence rate is concave in the number of the infectives, the models we consider have either a unique and stable endemic equilibrium state or no endemic equilibrium state at all; in the latter case the infection-free equilibrium state is stable. For the incidence rate of the form g(I)h(S), we prove global stability, constructing a Lyapunov function and using the direct Lyapunov method. It is remarkable that the system dynamics is independent of how the incidence rate depends on the number of susceptible individuals. We demonstrate this result using a SIRS model and a SEIRS model as case studies. For other compartment epidemic models, the analysis is quite similar, and the same conclusion, namely stability of the equilibrium states, holds.
We consider global properties for the classical SIR, SIRS and SEIR models of infectious diseases, including the models with the vertical transmission, assuming that the horizontal transmission is governed by an unspecified function f(S,I). We construct Lyapunov functions which enable us to find biologically realistic conditions sufficient to ensure existence and uniqueness of a globally asymptotically stable equilibrium state. This state can be either endemic, or infection-free, depending on the value of the basic reproduction number
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.