This paper studies the scalability and replicability of smart grid projects. Currently, most smart grid projects are still in the R&D or demonstration phases. The full roll-out of the tested solutions requires a suitable degree of scalability and replicability to prevent project demonstrators from remaining local experimental exercises. Scalability and replicability are the preliminary requisites to perform scaling-up and replication successfully; therefore, scalability and replicability allow for or at least reduce barriers for the growth and reuse of the results of project demonstrators. The paper proposes factors that influence and condition a project's scalability and replicability. These factors involve technical, economic, regulatory and stakeholder acceptance related aspects, and they describe requirements for scalability and replicability. In order to assess and evaluate the identified scalability and replicability factors, data has been collected from European and national smart grid projects by means of a survey, reflecting the projects' view and results. The evaluation of the factors allows quantifying the status quo of on-going projects with respect to the scalability and replicability, i.e., they provide a feedback on to what extent projects take into account these factors and on whether the projects' results and solutions are actually scalable and replicable.
The continuously growing distributed generation and the business potential for demand response are gradually enabling significant provision of flexibility and reserve towards distribution networks. For this reason, transmission and distribution system operators need to coordinate their operation in order to develop efficient market arrangements that can help utilize all the resources capable of providing ancillary services. SmartNet project investigated the potential interaction schemes between network operators, together with the possible new services devoted to the optimal distribution grid management. This paper summarizes the main challenges in simulating complex electricity systems and flexibility markets for three European countries (Italy, Denmark and Spain) in 2030 scenarios. The simulation results are then analyzed using cost-benefit analysis and regulatory conclusions are deduced.
The FlexPlan Horizon2020 project aims at establishing a new grid-planning methodology which considers the opportunity to introduce new storage and flexibility resources in electricity transmission and distribution grids as an alternative to building new grid elements, in accordance with the intentions of the Clean Energy for all Europeans regulatory package of the European Commission. FlexPlan creates a new innovative grid-planning tool whose ambition is to go beyond the state of the art of planning methodologies by including the following innovative features: assessment of the best planning strategy by analysing in one shot a high number of candidate expansion options provided by a pre-processor tool, simultaneous mid- and long-term planning assessment over three grid years (2030, 2040, 2050), incorporation of a full range of cost–benefit analysis criteria into the target function, integrated transmission distribution planning, embedded environmental analysis (air quality, carbon footprint, landscape constraints), probabilistic contingency methodologies in replacement of the traditional N-1 criterion, application of numerical decomposition techniques to reduce calculation efforts and analysis of variability of yearly renewable energy sources (RES) and load time series through a Monte Carlo process. Six regional cases covering nearly the whole European continent are developed in order to cast a view on grid planning in Europe till 2050. FlexPlan will end up formulating guidelines for regulators and planning offices of system operators by indicating to what extent system flexibility can contribute to reducing overall system costs (operational + investment) yet maintaining current system security levels and which regulatory provisions could foster such process. This paper provides a complete description of the modelling features of the planning tool and pre-processor and provides the first results of their application in small-scale scenarios.
The lack of a good understanding of customer needs within eservice initiatives caused severe financial losses in the Norwegian energy sector, resulting in the failure of e-service initiatives offering packages of independent services. One of the causes was a poor elicitation and understanding of the e-services at hand. In this paper, we propose an ontologically founded approach (1) to describe customer needs, and the necessary e-services that satisfy such needs, and (2) to bundle elementary e-services into needs-satisfying e-service bundles. The ontology as well as the associated reasoning mechanisms are codified in RDFS to enable software support for need elicitation and service bundling. A case study from the Norwegian energy sector is used to demonstrate how we put our theory into practice. This work has been partially supported by the European Commission, as project No. IST-2001-33144 OBELIX (Ontology-Based ELectronic Integration of compleX products and value chains) and by the Dutch Ministry of Economic Affairs, as the FrUX project (Freeband User eXperience).
The paper presents the first findings from workpackage "Increased Observability" in EU FP7 project ELECTRA. Accommodation of intermittent generation into the network and its reliable operation require a gradual evolution of the network structure and in particular improvement of its monitoring or observing. The present practices of observing distribution networks are quite limited and vary from country to country. New network architectures are expected to evolve in the close future, including web-of-cells (concept defined in ELECTRA), which will result in new control schemes, significantly different from the existing. Several new observability needs have to be met in order to secure operation of the future networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.