There is still much to understand about the brain’s colour processing mechanisms and the transformation from cone-opponent representations to perceptual hues. Moreover, it is unclear which area(s) in the brain represent unique hues. We propose a hierarchical model inspired by the neuronal mechanisms in the brain for local hue representation, which reveals the contributions of each visual cortical area in hue representation. Hue encoding is achieved through incrementally increasing processing nonlinearities beginning with cone input. Besides employing nonlinear rectifications, we propose multiplicative modulations as a form of nonlinearity. Our simulation results indicate that multiplicative modulations have significant contributions in encoding of hues along intermediate directions in the MacLeod-Boynton diagram and that our model V2 neurons have the capacity to encode unique hues. Additionally, responses of our model neurons resemble those of biological colour cells, suggesting that our model provides a novel formulation of the brain’s colour processing pathway.
According to the organizational-activational hypothesis, the organizational effects of testosterone during (prenatal) brain development moderate the activational effects of adult testosterone on behavior. Accumulating evidence supports the notion that adolescence is another period during which sex hormones organize the nervous system. Here we investigate how pubertal sex hormones moderate the activational effects of adult sex hormones on social cognition in humans. To do so, we recruited a sample of young men (n = 507; age, ;19 years) from a longitudinal birth cohort and investigated whether testosterone exposure during adolescence (from 9 to 17 years of age) moderates the relation between current testosterone and brain response to faces in young adulthood, as assessed with functional magnetic resonance imaging (fMRI). Our results showed that the cumulative exposure to testosterone during adolescence moderated the relation between adult testosterone and both the mean fMRI response and functional connectivity (i.e., node strength). Specifically, in participants with low exposure to testosterone during puberty, we observed a positive relationship between current testosterone and the brain response to faces; this was not the case for participants with medium and high pubertal testosterone. Furthermore, we observed a stronger relationship between the brain response and current testosterone in parts of the angry-face network associated with (vs without) motion in the eye region of an observed (angry) face. We speculate that pubertal testosterone modulates the relationship between current testosterone and brain response to social cues carried by the eyes and signaling a potential threat.
BackgroundObesity has been associated with depressive symptoms and impaired cognition, but the mechanisms underlying these relationships are not well understood. It is also not clear whether reducing adiposity reverses these behavioral outcomes. The current study tested the impact of bariatric surgery on depressive symptoms, cognition, and the brain; using a mediation model, we also examined whether the relationship between changes in adiposity after the surgery and those in regional thickness of the cerebral cortex are mediated by changes in low-grade inflammation (as indexed by C-reactive protein; CRP).MethodsA total of 18 bariatric patients completed 3 visits, including one baseline before the surgery and two post-surgery measurements acquired at 6- and 12-months post-surgery. Each visit consisted of a collection of fasting blood sample, magnetic resonance imaging of the brain and abdomen, and assessment of depressive symptoms and cognition.ResultsAfter surgery, we observed reductions of both visceral fat (p< 0.001) and subcutaneous fat (p< 0.001), less depressive symptoms (p< 0.001), improved verbal reasoning (p< 0.001), and reduced CRP (p< 0.001). Mediation analyses revealed that the relationships between the surgery-related changes in visceral fat and cortical thickness in depression-related regions are mediated by changes in CRP (ab=-.027, SE=.012, 95% CI [-.054, -,006]).ConclusionThese findings suggest that some of the beneficial effects of bariatric surgery on brain function and structure are due to a reduction of adiposity-related low-grade systemic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.