We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat.
N. 2003. Functional responses in polar bear habitat selection. -Oikos 100: 112-124.Habitat selection may occur in situations in which animals experience a trade-off, e.g. between the use of habitats with abundant forage and the use of safer retreat habitats with little forage. Such trade-offs may yield relative habitat use conditional on the relative availability of the different habitat types, as proportional use of foraging habitat may exceed proportional availability when foraging habitat is scarce, but be less than availability when foraging habitat is abundant. Hence, trade-offs in habitat use may result in functional responses in habitat use (i.e. change in relative use with changing availability). We used logistic and log-linear models to model functional responses in female polar bear habitat use based on satellite telemetry data from two contiguous populations; one near shore inhabiting sea ice within fjords, and one inhabiting pelagic drift ice. Open ice, near the ice edge, is a highly dynamic habitat hypothesised to be important polar bear habitat due to high prey availability. In open ice-polar bears may experience a high energetic cost of movements and risk drifting away from the main ice field (i.e. trade off between feeding and energy saving or safety). If polar bears were constrained by ice dynamics we therefore predicted use of retreat habitats with greater ice coverage relative to habitats used for hunting. The polar bears demonstrated season and population specific functional responses in habitat use, likely reflecting seasonal and regional variation in use of retreat and foraging habitats. We suggest that in seasons with functional responses in habitat use, polar bear space use and population distribution may not be a mere reflection of prey availability but rather reflect the alternate allocation of time in hunting and retreat habitats.M. Mauritzen, Norwegian Polar Inst., Zool. Mus.,
Summary1. Animal populations, defined by geographical areas within a species' distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations. 2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years. 3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability. 4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility. 5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear-seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.
A large-scale survey was conducted in August 2004 to estimate the size of the Barents Sea polar bear subpopulation. We combined helicopter line transect distance sampling (DS) surveys in most of the survey area with total counts in small areas not suitable for DS. Due to weather constraints we failed to survey some of the areas originally planned to be covered by DS. For those, abundance was estimated using a ratio estimator, in which the auxiliary variable was the number of satellite telemetry fixes (in previous years). We estimated that the Barents Sea subpopulation had approximately 2,650 (95% CI approximately 1,900-3,600) bears. Given current intense interest in polar bear management due to the potentially disastrous effects of climate change, it is surprising that many subpopulation sizes are still unknown. We show here that line transect sampling is a promising method for addressing the need for abundance estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.