In this paper we develop the elements of the theory of algorithmic randomness in continuous-time Markov chains (CTMCs). Our main contribution is a rigorous, useful notion of what it means for an individual trajectory of a CTMC to be random. CTMCs have discrete state spaces and operate in continuous time. This, together with the fact that trajectories may or may not halt, presents challenges not encountered in more conventional developments of algorithmic randomness.Although we formulate algorithmic randomness in the general context of CTMCs, we are primarily interested in the computational power of stochastic chemical reaction networks, which are special cases of CTMCs. This leads us to embrace situations in which the long-term behavior of a network depends essentially on its initial state and hence to eschew assumptions that are frequently made in Markov chain theory to avoid such dependencies.After defining the randomness of trajectories in terms of a new kind of martingale (algorithmic betting strategy), we prove equivalent characterizations in terms of constructive measure theory and Kolmogorov complexity. As a preliminary application we prove that, in any stochastic chemical reaction network, every random trajectory with bounded molecular counts has the non-Zeno property that infinitely many reactions do not occur in any finite interval of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.