Current efforts towards achieving better connectivity and increasing intelligence in functioning of industrial processes are guided by the Industrial Internet of Things paradigm and implicitly stimulate occurrence of data accumulation. In recent years, several researchers and industrial products have presented Historian application solutions for data accumulation. The large amounts of data that are gathered by these Historians remains mostly unused or used only for reporting purposes. So far, Historians have been focused on connectivity, data manipulation possibilities, and sometimes on low-cost solutions in order to gain higher applicability or to integrate multiple SCADA servers (e.g. Siemens–WinCC, Schneider Electric – Vijeo Citect, IGSS, Wonderware, InduSoft Web Studio, Inductive Automation – Ignition, etc.), etc. Both literature and industry are currently unable to identify a Historian solution that functions in fog and efficiently applies and is built upon Industry 4.0 ideas. The future is to conceive a proactive Historian that is able to, besides gathering data, identify dependencies and patterns for particular processes and elaborate strategies to increase performance in order to provide feedback through corrective action on the functional system. Using available solutions, determining patterns by the Historian operator in the context of big data is a tremendous effort. The motivation of this research is provided by the currently unoptimized and partly inefficient systems in the water industry that can benefit from cost reduction and quality indicator improvements through IIoT concepts related to data processing and process adjustments. As the first part of more complex research to obtain a proactive Historian, the current paper wishes to propose a reference architecture and to address the issue of data dependency analyses as part of pattern identification structures. The conceptual approach targets a highly customizable solution considering the variety of industrial processes, but it also underlines basic software modules as generally applicable for the same reason. To prove the efficiency of the obtained solution in the context of real industrial processes, and their corresponding monitoring and control solutions, the paper presents a test scenario in the water industry.
The industry is generally preoccupied with the evolution towards Industry 4.0 principles and the associated advantages as cost reduction, respectively safety, availability, and productivity increase. So far, it is not completely clear how to reach these advantages and what their exact representation or impact is. It is necessary for industrial systems, even legacy ones, to assure interoperability in the context of chronologically dispersed and currently functional solutions, respectively; the Open Platform Communications Unified Architecture (OPC UA) protocol is an essential requirement. Then, following data accumulation, the resulting process-aware strategies have to present learning capabilities, pattern identification, and conclusions to increase efficiency or safety. Finally, model-based analysis and decision and control procedures applied in a non-invasive manner over functioning systems close the optimizing loop. Drinking water facilities, as generally the entire water sector, are confronted with several issues in their functioning, with a high variety of implemented technologies. The solution to these problems is expected to create a more extensive connection between the physical and the digital worlds. Following previous research focused on data accumulation and data dependency analysis, the current paper aims to provide the next step in obtaining a proactive historian application and proposes a non-invasive decision and control solution in the context of the Industrial Internet of Things, meant to reduce energy consumption in a water treatment and distribution process. The solution is conceived for the fog computing concept to be close to local automation, and it is automatically adaptable to changes in the process’s main characteristics caused by various factors. The developments were applied to a water facility model realized for this purpose and on a real system. The results prove the efficiency of the concept.
The Industrial Internet of Things and Industry 4.0 paradigms are steering the industrial landscape towards better connected entities, superior interoperability and information exchange, which lays the basis for developing more intelligent solutions that are already starting to bring numerous benefits. The current research aligns to this course, in an attempt to build an automated and autonomous software tool, capable of reducing the energy consumption of a water treatment and distribution facility, by optimizing the water sources usage. Based on several previous researches, the present paper details both the complete automation of the optimizing strategy inside a proactive historian application and the tests executed with the finished solution. Possessing the abilities to directly influence the monitored system in a non-invasive manner, and to link all the sequences of the algorithm automatically, the solution is now ready for long-term functioning without any external interference.
The current landscape in the water industry is dominated by legacy technical systems that are inefficient and unoptimized. In recent years, sustained efforts could be identified, especially under the guidance of the Industrial Internet of Things (IIoT) paradigm, in order to develop an increased level of both connectivity and intelligence in the functioning of industrial processes. This led to the emergence of the data accumulation concept, materialized in the practical sphere by Historian applications. Although various classic Historian solutions are available, the capability to optimize and influence the monitored system in a proactive way, resulting in increased efficiency, cost reduction, or quality indicators improvements, could not be identified to date. Following a proposed software reference architecture for such a proactive Historian, a data dependency identification strategy and some obtained recipes for energy efficiency improvements in the water industry were developed. However, a complete solution for real industrial processes represents complex research. The current paper contributes to this research effort by developing part of the reference architecture that predicts the future evolution of the monitored system, based on weather dependency and forecast, thus sustaining the effort to achieve a fully functional, real-world, tested and validated proactive Historian application, with potential to bring significant direct benefits to the water industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.