We study whether the solutions of a fully nonlinear, uniformly parabolic equation with superquadratic growth in the gradient satisfy initial and homogeneous boundary conditions in the classical sense, a problem we refer to as the classical Dirichlet problem. Our main results are: the nonexistence of global-in-time solutions of this problem, depending on a specific largeness condition on the initial data, and the existence of local-in-time solutions for initial data C 1 up to the boundary. Global existence is know when boundary conditions are understood in the viscosity sense, what is known as the generalized Dirichlet problem. Therefore, our result implies loss of boundary conditions in finite time. Specifically, a solution satisfying homogeneous boundary conditions in the viscosity sense eventually becomes strictly positive at some point of the boundary.
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/
We study whether the solutions of a parabolic equation with diffusion given by the fractional Laplacian and a dominating gradient term satisfy Dirichlet boundary data in the classical sense or in the generalized sense of viscosity solutions. The Dirichlet problem is well posed globally in time when boundary data is assumed to be satisfied in the latter sense. Thus, our main results are a) the existence of solutions which satisfy the boundary data in the classical sense for a small time, for all Hölder-continuous initial data, with Hölder exponent above a critical a value, and b) the nonexistence of solutions satisfying the boundary data in the classical sense for all time. In this case, the phenomenon of loss of boundary conditions occurs in finite time, depending on a largeness condition on the initial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.