In this paper we investigate homogenization results for the principal eigenvalue problem associated to 1-homogeneous, uniformly elliptic, second-order operators. Under rather general assumptions, we prove that the principal eigenpair associated to an oscillatory operator converges to the eigenpair associated to the effective one. This includes the case of fully nonlinear operators. Rates of convergence for the eigenvalues are provided for linear and nonlinear problems, under extra regularity/convexity assumptions. Finally, a linear rate of convergence (in terms of the oscillation parameter) of suitably normalized eigenfunctions is obtained for linear problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.