The intrinsic period of circadian clocks is their defining adaptive property. To identify the biochemical mechanisms whereby casein kinase1 (CK1) determines circadian period in mammals, we created mouse null and tau mutants of Ck1 epsilon. Circadian period lengthened in CK1epsilon-/-, whereas CK1epsilon(tau/tau) shortened circadian period of behavior in vivo and suprachiasmatic nucleus firing rates in vitro, by accelerating PERIOD-dependent molecular feedback loops. CK1epsilon(tau/tau) also accelerated molecular oscillations in peripheral tissues, revealing its global role in circadian pacemaking. CK1epsilon(tau) acted by promoting degradation of both nuclear and cytoplasmic PERIOD, but not CRYPTOCHROME, proteins. Together, these whole-animal and biochemical studies explain how tau, as a gain-of-function mutation, acts at a specific circadian phase to promote degradation of PERIOD proteins and thereby accelerate the mammalian clockwork in brain and periphery.
A population of 96 doubled haploid lines (DHLs) was prepared from F1 plants of the hexaploid wheat cross Chinese Spring x SQ1 (a high abscisic acid-expressing breeding line) and was mapped with 567 RFLP, AFLP, SSR, morphological and biochemical markers covering all 21 chromosomes, with a total map length of 3,522 cM. Although the map lengths for each genome were very similar, the D genome had only half the markers of the other two genomes. The map was used to identify quantitative trait loci (QTLs) for yield and yield components from a combination of 24 site x treatment x year combinations, including nutrient stress, drought stress and salt stress treatments. Although yield QTLs were widely distributed around the genome, 17 clusters of yield QTLs from five or more trials were identified: two on group 1 chromosomes, one each on group 2 and group 3, five on group 4, four on group 5, one on group 6 and three on group 7. The strongest yield QTL effects were on chromosomes 7AL and 7BL, due mainly to variation in grain numbers per ear. Three of the yield QTL clusters were largely site-specific, while four clusters were largely associated with one or other of the stress treatments. Three of the yield QTL clusters were coincident with the dwarfing gene Rht-B1 on 4BS and with the vernalisation genes Vrn-A1 on 5AL and Vrn-D1 on 5DL. Yields of each DHL were calculated for trial mean yields of 6 g plant(-1) and 2 g plant(-1) (equivalent to about 8 t ha(-1) and 2.5 t ha(-1), respectively), representing optimum and moderately stressed conditions. Analyses of these yield estimates using interval mapping confirmed the group-7 effects on yield and, at 2 g plant(-1), identified two additional major yield QTLs on chromosomes 1D and 5A. Many of the yield QTL clusters corresponded with QTLs already reported in wheat and, on the basis of comparative genetics, also in rice. The implications of these results for improving wheat yield stability are discussed.
The hypothalamic suprachiasmatic nuclei (SCN), the principal circadian oscillator in mammals, are synchronized to the solar day by the light-dark cycle, and in turn, they coordinate circadian oscillations in peripheral tissues. The tau mutation in the Syrian hamster is caused by a point mutation leading to a deficiency in the ability of Casein Kinase 1epsilon to phosphorylate its targets, including circadian PER proteins. How this accelerates circadian period in neural tissues is not known, nor is its impact on peripheral circadian oscillators established. We show that this mutation has no effect on per mRNA expression nor the nuclear accumulation of PER proteins in the SCN. It does, however, accelerate the clearance of PER proteins from the nucleus to an extent sufficient to explain the shortened circadian period of behavioral rhythms. The mutation also has novel, unanticipated consequences for circadian timing in the periphery, including tissue-specific phase advances and/or reduced amplitude of circadian gene expression. The results suggest that the tau mutation accelerates a specific phase, during mid-late subjective night of the SCN circadian feedback loop, rather than cause a global compression of the entire cycle. This reprogrammed output from the clock is associated with peripheral desynchrony, which in turn could account for impaired growth and metabolic efficiency of the mutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.