The proximal point algorithm is a widely used tool for solving a variety of convex optimization problems such as finding zeros of maximally monotone operators, fixed points of nonexpansive mappings, as well as minimizing convex functions. The algorithm works by applying successively so-called "resolvent" mappings associated to the original object that one aims to optimize. In this paper we abstract from the corresponding resolvents employed in these problems the natural notion of jointly firmly nonexpansive families of mappings. This leads to a streamlined method of proving weak convergence of this class of algorithms in the context of complete CAT(0) spaces (and hence also in Hilbert spaces). In addition, we consider the notion of uniform firm nonexpansivity in order to similarly provide a unified presentation of a case where the algorithm converges strongly. Methods which stem from proof mining, an applied subfield of logic, yield in this situation computable and low-complexity rates of convergence.
We use techniques of proof mining to extract a uniform rate of metastability (in the sense of Tao) for the strong convergence of approximants to fixed points of uniformly continuous pseudocontractive mappings in Banach spaces which are uniformly convex and uniformly smooth, i.e. a slightly restricted form of the classical result of Reich. This is made possible by the existence of a modulus of uniqueness specific to uniformly convex Banach spaces and by the arithmetization of the use of the limit superior. The metastable convergence can thus be proved in a system which has the same provably total functions as first-order arithmetic and therefore one may interpret the resulting proof in Gödel's system T of higher-type functionals. The witness so obtained is then majorized (in the sense of Howard) in order to produce the final bound, which is shown to be definable in the subsystem T1. This piece of information is further used to obtain rates of metastability to results which were previously only analyzed from the point of view of proof mining in the context of Hilbert spaces, i.e. the convergence of the iterative schemas of Halpern and Bruck. Mathematics Subject Classification 2010: 47H06, 47H09, 47H10, 03F10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.