Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined. Research on plant cell death has grown considerably in the past few years, owing to the importance of cell death for plant development and defense. Just as animal cells engage several mechanisms leading to death, the road to cell demise in plants can also vary. The long evolutionary distance and distinct cellular architecture between the two kingdoms may account for the differences between the mechanisms of plant and animal cell death. It is therefore appropriate to assess the relevance of animal cell death nomenclature 1 to plants. At present, there is confusion in cell death terminology in plant biology, which drives our attempt to formulate a more logical classification. Although our molecular understanding of plant cell death regulation and execution is insufficient to create definitive classifications based on precise biochemical pathways, it is possible to begin classifying plant cell death scenarios based on morphological criteria, as was initially the case in animal cell death research 2,3 and is still used for the classification of cell death in animal science. 1 This document attempts to provide a classification of plant cell death. We urge authors, reviewers and editors to follow this classification to facilitate communication between scientists and accelerate research in this field.
Programmed cell death (PCD) is indispensable for eukaryotic development. In animals, PCD is executed by the caspase family of cysteine proteases. Plants do not have close homologues of caspases but possess a phylogenetically distant family of cysteine proteases named metacaspases. The cellular function of metacaspases in PCD is unknown. Here we show that during plant embryogenesis, metacaspase mcII-Pa translocates from the cytoplasm to nuclei in terminally differentiated cells that are destined for elimination, where it colocalizes with the nuclear pore complex and chromatin, causing nuclear envelope disassembly and DNA fragmentation. The cell-death function of mcII-Pa relies on its cysteine-dependent arginine-specific proteolytic activity. Accordingly, mutation of catalytic cysteine abrogates the proteolytic activity of mcII-Pa and blocks nuclear degradation. These results establish metacaspase as an executioner of PCD during embryo patterning and provide a functional link between PCD and embryogenesis in plants. Although mcII-Pa and metazoan caspases have different substrate specificity, they serve a common function during development, demonstrating the evolutionary parallelism of PCD pathways in plants and animals.embryo suspensor ͉ metacaspase ͉ nuclear degradation P rogrammed cell death (PCD) is indispensable for normal embryo development both in animals and in plants, where temporary, surplus, or aberrantly formed tissues and organs are removed for correct pattern formation (1, 2). The key morphogenetic event in plant embryogenesis is formation of the apicalbasal pattern via establishment of the proliferating embryo proper (apical) and the terminally differentiated suspensor (basal). Developmental programs of the embryo proper and the suspensor are closely coordinated, and imbalance causes embryonic defects or lethality (2-4). While the embryo proper gives rise to the plant, the suspensor functions during a brief period as a conduit of growth factors to the developing embryo and is subsequently eliminated by PCD (2). The terminal differentiation of the embryo suspensor is the earliest manifestation of cellular suicide in plant ontogenesis. However, the molecular mechanisms that regulate PCD in plant embryos are unknown.The nucleus is the major target of cell degradation machinery during PCD. Nuclear degradation processes encompass chromatin events (i.e., chromatin condensation and DNA fragmentation) and nuclear envelope events (i.e., lobing of the nuclear surface and disassembly of nuclear pore complex) that occur simultaneously in the same cell (2, 5). The structural organization of plant and animal nuclei is conserved (6), explaining why the morphological pattern of nuclear degradation is also conserved (2). However, the molecular composition of plant and animal nuclear envelopes is not conserved (6), implying that different molecular mechanisms are responsible for nuclear envelope events during PCD in plants.In animals, nuclear degradation during PCD is executed by a caspase family of cysteine proteases...
Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals. Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases. Although metacaspases are essential for PCD, their natural substrates remain unknown. Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression, is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.