The hydrogen bond (H-bond) energies are evaluated for 18 molecular crystals with 28 moderate and strong O-H···O bonds using the approaches based on the electron density properties, which are derived from the B3LYP/6-311G** calculations with periodic boundary conditions. The approaches considered explore linear relationships between the local electronic kinetic G(b) and potential V(b) densities at the H···O bond critical point and the H-bond energy E(HB). Comparison of the computed E(HB) values with the experimental data and enthalpies evaluated using the empirical correlation of spectral and thermodynamic parameters (Iogansen, Spectrochim. Acta Part A 1999, 55, 1585) enables to estimate the accuracy and applicability limits of the approaches used. The V(b)-E(HB) approach overestimates the energy of moderate H-bonds (E(HB) < 60 kJ/mol) by ~20% and gives unreliably high energies for crystals with strong H-bonds. On the other hand, the G(b)-E(HB) approach affords reliable results for the crystals under consideration. The linear relationship between G(b) and E(HB) is basis set superposition error (BSSE) free and allows to estimate the H-bond energy without computing it by means of the supramolecular approach. Therefore, for the evaluation of H-bond energies in molecular crystals, the G(b) value can be recommended to be obtained from both density functional theory (DFT) computations with periodic boundary conditions and precise X-ray diffraction experiments.
The Cambridge Structural Database has been used to investigate the detailed environment of H2O2 molecules and hydrogen-bond patterns within “true” peroxosolvates in which the H2O2 molecules do not interact directly with the metal atoms. A study of 65 crystal structures and over 260 hydrogen bonds reveals that H2O2 always forms two H-bonds as proton donors and up to four H-bonds as a proton acceptor, but the latter can be absent altogether. The necessary features of peroxosolvate coformers are clarified. (1) Coformers should not participate in redox reactions with H2O2 and should not catalyze its decomposition. (2) Coformers should be Brønsted bases or exhibit amphoteric properties. The efficiency of the proposed criteria for peroxosolvate formation is illustrated by the synthesis and characterization of several new crystals. Conditions preventing the H2O2/H2O isomorphous substitution are essential for peroxosolvate stability: (1) Every H2O2 in the peroxosolvate has to participate in five or six hydrogen bonds. (2) The distance between the two proton acceptors forming H-bonds with the H2O2 molecule should be longer than the distance defined by the nature of the acceptor atoms.
Numerous heteroleptic 2,6-di-tert-butyl-4-methylphenolate (BHT) magnesium complexes have been synthesized by treatment of (BHT)MgBu(THF) with various alcohols. Molecular structures of the complexes have been determined by X-ray diffraction. The magnesium coordination number in [(BHT)Mg(μ-OBn)(THF)] (3) and [(BHT)Mg(μ-O-tert-BuCH)(THF)] (4) is equal to 4. Complexes formed from esters of glycolic and lactic acids, [(BHT)Mg(μ-OCHCOOEt)(THF)] (5) and [(BHT)Mg(μ-OCH(CH)COOCHCOOBu)(THF)] (6) contain chelate fragments with pentacoordinated magnesium. Compounds 3-6 contain THF molecules coordinated to magnesium atoms. Complex {(BHT)Mg[μ-O(CH)CON(CH)]} (7) does not demonstrate any tendency to form an adduct with THF. It has been experimentally determined that complexes 3 and 5 are highly active catalysts of lactide polymerization. The activity of 4 is rather low, and complex 7 demonstrates moderate productivity. According to DOSY NMR experiments, compounds 3 and 5 retain their dimeric structures even in THF. The free energies of model dimeric [(DBP)Mg(μ-OMe)(Sub)] and monomeric (DBP)Mg(OMe)(Sub) products on treatment of [(DBP)Mg(μ-OMe)(THF)] with a series of σ-electron donors (Sub) have been estimated by DFT calculations. These results demonstrate that the substitution of THF by Sub in a dimeric molecule is an energetically allowed process, whereas the dissociation of dimers is energetically unfavorable. DFT modeling of ε-CL and (dl)-lactide ROP catalyzed by dimeric and monomeric complexes showed that a cooperative effect of two magnesium atoms occurs within the ROP for binuclear catalytic species. A comparison of the reaction profiles for ROP catalyzed by binuclear and mononuclear species allowed us to conclude that the binuclear mechanism is favorable in early stages of ROP initiated by dimers 3 and 5.
A series of oligogermanes, (Me 3 Si) 3 GeGeCl 3 , (C 6 F 5 ) 3 GeGePh 3 , (C 6 F 5 ) 3 GeGe(p-Tol) 3 , and (C 6 F 5 ) 2 Ge[Ge(p-Tol) 3 ] 2 , containing substituents with different electronic properties at neighboring germanium atoms were synthesized. According to X-ray diffraction studies, UV/visible spectroscopy, and quantum chemical calculations, these "donor−acceptor" oligogermanes are characterized by energies of electronic transitions lower than those for other similar compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.