We report comprehensive study of physical properties of the binary superconductor compound SnAs. The electronic band structure of SnAs was investigated using both angle-resolved photoemission spectroscopy (ARPES) in a wide binding energy range and density functional theory (DFT) within generalized gradient approximation (GGA). The DFT/GGA calculations were done including spin-orbit coupling for both bulk and (111) slab crystal structures. Comparison of the DFT/GGA band dispersions with ARPES data shows that (111) slab much better describes ARPES data than just bulk bands. Superconducting properties of SnAs were studied experimentally by specific heat, magnetic susceptibility, magnetotransport measurements and Andreev reflection spectroscopy. Temperature dependences of the superconducting gap and of the specific heat were found to be well consistent with those expected for the single band BCS superconductors with an isotropic s-wave order parameter. Despite spin-orbit coupling is present in SnAs, our data shows no signatures of a potential unconventional superconductivity, and the characteristic BCS ratio 2∆/Tc = 3.48 − 3.73 is very close to the BCS value in the weak coupling limit.
Over the past six years (2015)(2016)(2017)(2018)(2019)(2020)(2021), many superconducting hydrides with critical temperatures TC up to 250 K, which are currently record highs, have been discovered. Now we can already say that a special field of superconductivity has developed. This is hydride superconductivity at ultrahigh pressures. For the most part, the properties of superhydrides are well described by the Migdal-Eliashberg theory of strong electronphonon interaction, especially when anharmonicity of phonons is taken into account. We investigate the isotope effect, the effect of the magnetic field (up to 60-70 T) on the critical temperature and critical current in the hydride samples, and the dependence of Tc on the pressure and the degree of doping. The divergences between the theory and experiment are of interest, especially in the regions of phase stability and in the behavior of the upper critical magnetic fields at low temperatures. We present a retrospective analysis of data of 2015-2021 and describe promising directions for future research of hydride superconductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.