It was demonstrated that electrospraying (ES) of solvents from a glass capillary proceeds without emission of light provided that the current is kept below a certain critical level (<100 nA at positive potential and <25 nA at negative potential for 96% ethanol; < 40 nA at positive potential for water). Though the onset of corona, as detected by the appearance of light, was always accompanied by a break in the current-voltage slope, such breaks also happened before the onset of corona, so they cannot be used as an adequate indicator of corona ignition. Of four ROS studied (hydrogen peroxide, ozone, hydroxyl radicals, and superoxide anions), only H2O2 and ozone were found to be generated at a current of 150-200 nA in detectable quantities: with a yield of 0.5-1 H2O2 molecules per electron at positive potential and 1.5-3 at negative potential. Despite the low yield of the ROS, jack bean urease was shown to be inactivated when the enzyme solution with a concentration below 20 μg/mL was electrosprayed at a current of 200 nA. Addition of 0.1 mM EDTA totally protected the activity of the electrosprayed urease.
In this report we present a proof-of-principle study aimed at developing non-invasive diagnostics for pulmonary TB that are based on analyzing TB biomarkers in exhaled microdroplets of lung fluid (MLFs). Samples were collected on electrospun filters recently developed by the authors, and then tested for the presence of Mycobacterium tuberculosis (Mtb) cells, Mtb DNA, and protein biomarkers (secreted Mtb antigens and antigen-specific antibodies). The latter were detected using rapid ultra-sensitive immunochemistry methods developed in our laboratory. Neither Mtb cells (limit of detection, LOD = 1 cell) nor Mtb DNA (LOD ∼ 10 CFU) were found in the MLF samples exhaled by TB patients. However, immunoglobulin A (IgA) was found in over 90% of samples from TB patients and healthy volunteers. Antigen-specific IgA were detected at higher rates in the patient samples as compared to those from nominally healthy volunteers resulting in a modest discrimination level of 72% sensitivity and 58% specificity. As such, this novel, non-invasive and fast breath diagnostic method shows promise for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.