This paper is a continuation of a study already carried out on the use of the reactive-telegraph equation to analyse problems of population dynamics based on a formulation of the boundary element method (BEM). In this paper, the numerical model simulates the evolution of a tumour as a problem of population density of cancer cells from different reactive terms coupled to the reactive-telegraph equation to describe the growth and distribution of the population, similar to the two-dimensional in vitro tumour growth experiment. The mathematical model developed is called D-BEM, uses a time independent fundamental solution and the finite difference method is combined with BEM to approximate the time derivative terms and the Gaussian quadrature is used to calculate the domain integrals. The solution of the system nonlinear of equations is based on the Gaussian elimination method and the stability of the proposed formulation was verified. As the telegraph equation has a wave behaviour, a phase change phenomenon that can lead to the appearance of negative population density may occur, an algorithm was developed to guarantee the solution's positivity. Important results were obtained and demonstrate the effect of the delay parameter on tumour growth. In one of the tested cases, the results indicated an oscillatory behaviour in the tumour growth when the delay parameter assumed increasing values. The results of numerical simulations that sought to represent tumour growth, as well as the entire formulation of the boundary elements are presented below.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.