A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenyl-phosphanes [{Cp-P(Ph2)=N-Ph}2Fe] (1), [{Cp-P(Ph2)=N-CH2-2-NC5H4}2Fe] (2) and [{Cp-P(Ph2)=N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)] and [{PdCl2}2(2)]. The complexes have been evaluated for their antripoliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a non-tumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin.
Organometallic gold complexes with N-heterocyclic carbene (NHC) ligands have been demonstrating promising properties as novel anticancer agents. Gold(I) NHC complexes containing different phosphanes as secondary ligands were shown to trigger strong cytotoxic effects in cancer cells, and their effective uptake into the cells was quantified by atomic absorption spectroscopy. Moreover, the new compounds strongly inhibited the activity of the seleno-enzyme thioredoxin reductase (TrxR) and of the zinc-finger enzyme poly(ADP-ribose) polymerase 1 (PARP-1). In the case of TrxR inhibition, their activity depended clearly on the size of the alkyl/aryl residues of phosphorus atoms. Density functional theory (DFT) calculations showed that the Au-P bond of the triphenylphosphane complex [Au(I) (NHC)(PPh3 )]I had a lower bond dissociation energy compared to trialkylphosphane complexes [Au(I) (NHC)(PR3 )]I, indicating a higher kinetic reactivity of this particular compound. In fact, [Au(I) (NHC)(PPh3 )]I triggered an enhanced inhibitory activity against PARP-1.
The inhibition of water and glycerol permeation via human aquaglyceroporin-3 (AQP3) by gold(iii) complexes has been studied by stopped-flow spectroscopy and, for the first time, its mechanism has been described using molecular dynamics (MD), combined with density functional theory (DFT) and electrochemical studies. The obtained MD results showed that the most effective gold-based inhibitor, anchored to Cys40 in AQP3, is able to induce shrinkage of pores preventing glycerol and water permeation. Moreover, the good correlation between the affinity of the Au(iii) complex to Cys binding and AQP3 inhibition effects was highlighted, while no influence of the different oxidative character of the complexes could be observed.
Aquaporins (AQPs) are membrane water/glycerol channels with essential roles in biological systems, as well as being promising targets for therapy and imaging. Using a stopped-flow method, a series of gold(III), platinum(II) and copper(II) complexes bearing nitrogen donor ligands, such as 1,10-phenatroline, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diamino-2,2'-bipyridine and 2,2';6',2"-terpyridine, were evaluated in human red blood cells expressing AQP1 and AQP3, responsible for water and glycerol movement, respectively. The results showed that the gold(III) complexes selectively modulate AQP3 over AQP1. Molecular modeling and density functional theory (DFT) calculations were subsequently performed to rationalize the observations and to investigate the possible molecular mechanism through which these gold compounds act on their putative target (AQP3). In the absence of any crystallographic data, a previously reported homology model was used for this purpose. Combined, the findings of this study show that potent and selective modulation of these solute channels is possible, however further investigation is required into the selectivity of this class of agents against all AQP isoforms and their potential therapeutic uses.
The binding modes and free-energy landscape of two Au /N-heterocyclic carbene complexes interacting with G-quadruplexes, namely a human telomeric (hTelo) and a promoter sequence (C-KIT1), are studied here for the first time by metadynamics. The theoretical results are validated by FRET DNA melting assays and provide an accurate estimate of the absolute gold complex/DNA binding free energy. This advanced in silico approach is valuable to achieve rational drug design of selective G4 binders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.