BackgroundDomestic dogs and cats are very well known to develop chronic hepatic diseases, including hepatic lipidosis and cirrhosis. Ultrasonographic examination is extensively used to detect them. However, there are still few reports on the use of the ultrasound B-mode scan in correlation with histological findings to evaluate diffuse hepatic changes in rodents, which represent the most important animal group used in experimental models of liver diseases. The purpose of this study was to determine the reliability of ultrasound findings in the assessment of fatty liver disease and cirrhosis when compared to histological results in Wistar rats by following up a murine model of chronic hepatic disease.ResultsForty Wistar rats (30 treated, 10 controls) were included. Liver injury was induced by dual exposure to CCl4 and ethanol for 4, 8 and 15 weeks. Liver echogenicity, its correlation to the right renal cortex echogenicity, measurement of portal vein diameter (PVD) and the presence of ascites were evaluated and compared to histological findings of hepatic steatosis and cirrhosis. Liver echogenicity correlated to hepatic steatosis when it was greater or equal to the right renal cortex echogenicity, with a sensitivity of 90%, specificity of 100%, positive and negative predictive values of 100% and 76.9% respectively, and accuracy of 92.5%. Findings of heterogeneous liver echogenicity and irregular surface correlated to liver cirrhosis with a sensitivity of 70.6%, specificity of 100%, positive and negative predictive values of 100% and 82.1% respectively, and accuracy of 87.5%. PVD was significantly increased in both steatotic and cirrhotic rats; however, the later had greater diameters. PVD cut-off point separating steatosis from cirrhosis was 2.1 mm (sensitivity of 100% and specificity of 90.5%). One third of cirrhotic rats presented with ascites.ConclusionThe use of ultrasound imaging in the follow-up of murine diffuse liver disease models is feasible and efficient, especially when the studied parameters are used in combination. The potential implication of this study is to provide a non-invasive method that allows follow-up studies of fatty liver disease and cirrhosis of individual rats for pre-clinical drug or cell based therapies.
We investigated whether liver injury by dual exposure to ethanol and carbon tetrachloride (EtOH + CCl 4 ) for 15 weeks would persist after hepatotoxic agents were removed (EtOH + CCl 4 /8wR). After 15 weeks of hepatic injury with ethanol (5.5%, m/v) and carbon tetrachloride (0.05, mL/kg, ip), 5 of 11 female Wistar rats were sacrificed. The other 6 rats were maintained for an additional 8 weeks without hepatotoxic agents. Ultrasonography showed increased liver echogenicity and dilation of portal vein caliber in both groups (EtOH + CCl 4 : 0.22 ± 0.01 cm, P < 0.001; EtOH + CCl 4 /8wR: 0.21 ± 0.02 cm, P < 0.01) vs control (0.16 ± 0.02 cm). Histopathology showed regenerative nodules in both experimental groups. Histomorphometry revealed increased fibrosis content in both groups (EtOH + CCl 4 : 12.6 ± 2.64%, P < 0.001; EtOH + CCl 4 /8wR: 10.4 ± 1.36%, P < 0.05) vs control (2.2 ± 1.21%). Collagen types I and III were increased in groups EtOH + CCl 4 (collagen I: 2.5 ± 1.3%, P < 0.01; collagen III: 1.3 ± 0.2%, P < 0.05) and EtOH + CCl 4 /8wR (collagen I: 1.8 ± 0.06%, P < 0.05; collagen III: 1.5 ± 0.8%, P < 0.01) vs control (collagen I: 0.38 ± 0.11%; collagen III: 0.25 ± 0.06%). Tissue transglutaminase increased in both groups (EtOH + CCl 4 : 66.4 ± 8%, P < 0.01; EtOH + CCl 4 /8wR: 58.8 ± 21%, P < 0.01) vs control (7.9 ± 0.8%). Cirrhosis caused by the association of CCl 4 -EtOH remained for at least 8 weeks after removal of these hepatotoxic agents. Ultrasound images can be a useful tool to evaluate advanced hepatic alterations.
The normal hepatic ultrasound In order to standardize normal US parameters, our research group has examined 276 healthy Wistar rats. Such as described in small animals, the liver is bounded cranially by the concave highly echogenic curvilinear structure of the diaphragm-lung interface. It is bordered caudally by the fluid and gas reverberations in the fundus and body of the stomach to the left, and the pylorus and right kidney to the right. The anatomy divides the rat liver in four lobes: the right lateral lobe, middle, left lateral and caudate lobes, which in turn have independent portal and arterial vascularization and a separate biliar drainage. The right lateral lobe is subdivided into two segments, anterior and posterior, the last one adjacent to the right kidney and placed behind the inferior vena cava. The left lateral lobe is located on the left, in front of the stomach. In the midline, the caudate lobe is located dorsally and the median lobe lies ventrally. The liver has homogeneous parenchyma with medium level echogenicity and straight hepatic surface as normal characteristics (Fig. 2A) (
Lhermitte-Duclos disease (LDD), also called dysplastic gangliocytoma of the cerebellum, is a rare condition described in 1920. It represents a disorganization of cerebellar architecture with overgrowth of cerebellar ganglion cells which replace granular cells and Purkinje cells. In this report we present the case of a 62-year-old male affected by this disease, as well as literature review of the clinical, morphological and functional radiological findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.