The ventral portion of the medial prefrontal cortex (vMPFC) has been related to the expression of contextual fear conditioning. This study investigated the possible involvement of CB1 receptors in this aversive response. Male Wistar rats were submitted to a contextual aversive conditioning session and 48 h later re-exposed to the aversive context in which freezing and cardiovascular responses (increase of arterial pressure and heart rate) were recorded. The expression of CB1 receptor-mRNA in the vMPFC was also measured using real time-PCR. In the first experiment intra-vMPFC administration of the CB1 receptor agonist anandamide (AEA, 5 pmol/200 nl) or the AEA transport inhibitor AM404 (50 pmol/200 nl) prior to re-exposure to the aversive context attenuated the fear-conditioned responses. These effects were prevented by local pretreatment with the CB1 receptor antagonist AM251 (100 pmol/200 nl). Using the same conditioning protocol in another animal group, we observed that CB1 receptor mRNA expression increased in the vMPFC 48 h after the conditioning session. Although AM251 did not cause any effect by itself in the first experiment, this drug facilitated freezing and cardiovascular responses when the conditioning session employed a lesser aversive condition. These results indicated that facilitation of cannabinoid-mediated neurotransmission in the vMPFC by local CB1 receptor activation attenuates the expression of contextual fear responses. Together they suggest that local endocannabinoid-mediated neurotransmission in the vMPFC can modulate these responses.
The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α1-Adrenoceptor protein in the mesenteric bed was enhanced at the first week, whereas β2-adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT1A receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension.
Taken together, these results suggest that increased sympathetic activity may contribute to the early increase in MAP observed in ETOH-treated rats. However, the maintenance of this effect may be predominantly regulated by the long-term increase in the secretion of other circulating factors, such as AVP and ANG II, the secretion of both hormones being stimulated by the ETOH-induced dehydration.
The results indicate that mild hypertension is already observed at an early phase of ethanol consumption in rats. Because the content of circulating vasopressin was increased in ethanol-treated rats and their basal blood pressure returned to control levels after IV treatment with a V1-vasopressin receptor antagonist, it is proposed that increased circulating vasopressin content may mediate the hypertension observed in ethanol-treated rats.
OBJECTIVE:The effect of chronic ethanol exposure on chemoreflexes has not been extensively studied in experimental animals. Therefore, this study tested the hypothesis that known ethanol-induced autonomic, neuroendocrine and cardiovascular changes coincide with increased chemoreflex sensitivity, as indicated by increased ventilatory responses to hypoxia and hypercapnia.METHODS:Male Wistar rats were subjected to increasing ethanol concentrations in their drinking water (first week: 5% v/v, second week: 10% v/v, third and fourth weeks: 20% v/v). At the end of each week of ethanol exposure, ventilatory parameters were measured under basal conditions and in response to hypoxia (evaluation of peripheral chemoreflex sensitivity) and hypercapnia (evaluation of central chemoreflex sensitivity).RESULTS:Decreased respiratory frequency was observed in rats exposed to ethanol from the first until the fourth week, whereas minute ventilation remained unchanged. Moreover, we observed an increased tidal volume in the second through the fourth week of exposure. The minute ventilation responses to hypoxia were attenuated in the first through the third week but remained unchanged during the last week. The respiratory frequency responses to hypoxia in ethanol-exposed rats were attenuated in the second through the third week but remained unchanged in the first and fourth weeks. There was no significant change in tidal volume responses to hypoxia. With regard to hypercapnic responses, no significant changes in ventilatory parameters were observed.CONCLUSIONS:Our data are consistent with the notion that chronic ethanol exposure does not increase peripheral or central chemoreflex sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.