An open-source tool that allows for a fast and precise analytical calculation of multi-layer planar coils self-inductance, without any geometry limitation is proposed here. The process of designing and simulating planar coils to achieve reliable results is commonly limited on accuracy and or geometry, or are too time-consuming and expensive, thus a tool to speed up this design process is desired. The model is based on Grover equations, valid for any geometry. The validation of the tool was performed through the comparison with experimental measurements, Finite Element Model (FEM) simulations, and the main analytical methods usually used in literature, with errors registered to be below 2.5%, when compared to standard FEM simulations, and when compared to experimental measurements they are below 10% in the case of the 1-layer coils, and below 5% in the 2-layer coils (without taking into consideration the coil connectors). The proposed model offers a new approach to the calculation of the self-inductance of planar coils of several layers that combines precision, speed, independence of geometry, easy interaction, and no need for extra resources.
A tool that allows for a fast and precise analytical calculation of multi-layer planar coils self-inductance, without any geometry limitation is proposed here. For competitive markets, the time to develop a product is a critical aspect. The process of designing and simulating planar coils to achieve reliable results is commonly limited on accuracy and or geometry, or are too time-consuming and expensive, thus a tool to speed up this design process is desired. The model is based on Grover equations, valid for any geometry. The validation of the tool was performed through the comparison with experimental measurements, FEM simulations, and the main analytical methods usually used in literature, with errors registered to be below 2.5%, when compared to FEM simulations. This model offers a new approach to the calculation of the self-inductance of planar coils of several layers that combines precision, speed, independence of geometry, easy interaction, and no need for extra resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.