The natural environment of a neuron is the three-dimensional (3D) tissue. In vivo, embryonic sensory neurons transiently express a bipolar morphology with two opposing neurites before undergoing cytoplasmic and cytoskeletal rearrangement to a more mature pseudo-unipolar axonal arbor before birth. The unipolar morphology is crucial in the adult for correct information transmission from the periphery to the central nervous system. On two-dimensional (2D) substrates this transformation is delayed significantly or absent. We report that a 3D culture platform can invoke the characteristic transformation to the unipolar axonal arbor within a time frame similar to in vivo, overcoming the loss of this essential milestone in 2D substrates. Additionally, 3D substrates alone provided an environment that promoted axonal branching features that reflect morphological patterns observed in vivo. We have also analyzed the involvement of soluble cues in these morphogenic processes by culturing the neurons in the presence and absence of nerve growth factor (NGF), a molecule that plays distinct roles in the development of the peripheral and central nervous systems. Without NGF, both 2D and 3D cultures had significant decreases in the relative population of unipolar neurons as well as shorter neurite lengths and fewer branch points compared to cultures with NGF. Interestingly, branching features of neurons cultured in 3D without NGF resemble those of neurons cultured in 2D with NGF. Therefore, neurons cultured in 3D without NGF lost the ability to differentiate into unipolar neurons, suggesting that this morphological hallmark requires not only presentation of soluble cues like NGF, but also the surrounding 3D presentation of adhesive ligands to allow for realization of the innate morphogenic program. We propose that in a 3D environment, various matrix and soluble cues are presented toward all surfaces of the cell; this optimized milieu allows neurons to elaborate their genuine phenotype and follow programmed instructions that are intrinsic to the neuron, but disrupted when cells were dissected from the embryo. Thus, this study presents quantitative data supporting that 3D substrates are critical for sustaining the in vivo ontogeny of neurons and deciphering signaling mechanisms necessary for designing biomaterial scaffolds for nerve generation and repair.
Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM) were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices.
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically-degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle.
Neuronal differentiation, pathfinding and morphology are directed by biochemical cues that in vivo are presented in a complex scaffold of extracellular matrix (ECM). This microenvironment is three-dimensional (3D) and heterogeneous. Therefore, it is not surprising that more physiologically-relevant cellular responses are found in 3D culture environments rather than on two-dimensional (2D) flat substrates. One key difference between 2D and 3D environments is the spatial arrangement of cell-matrix interactions. Integrins and other receptor proteins link the various molecules presented in the extracellular environment to intracellular signaling cascades and thus influence a number of neuronal responses including the availability and activation of integrins themselves. We have previously reported that a 3D substrate induces an important morphological transformation of embryonic mouse dorsal root ganglion (DRG) neurons. Here, we investigate the hypothesis that β1-integrin signaling via focal adhesion kinase (FAK) and the RhoGTPases Rac and Rho influences neuronal morphology in 2D vs 3D environments. We report that β1-integrin activity and FAK phosphorylation at tyrosine 397 (FAKpY397) are linked to neuronal polarization as well as neurite outgrowth and branching. Rac and Rho expression are decreased in 3D vs 2D culture but not correlated with β1-integrin function. These results suggest that proper β1-integrin activity is required for elaboration of physiologic DRG morphology and that 3D culture provides a more appropriate milieu to the mimic in vivo scenario. We propose that neuronal morphology may be directed during development and regeneration by factors that influence how β1-integrin, FAK and RhoGTPase molecules integrate substrate signals in the 3D microenvironment.
Abstract-Neural Stem Cells (NSCs) have tremendous potential for tissue engineering applications because of their high regenerative capacity to promote functional recovery following disease and injury in the central nervous system. Despite their great potential, current methods to culture NSCs are limited; e.g., adherent 2D cultures are greatly simplified vs. the in vivo microenvironment by imposing altered tissue-specific architecture and mechanical and biochemical cues, and cell morphology. Environmental cues are critical for cellular maturation and function and in vivo these are presented in a 3D environment. Recent studies with non-neuronal cells demonstrate that in a 3D matrix, cells dramatically alter their morphology and signaling pathways, with in vitro 3D environments being a better representation of in vivo systems. The main goal of this study is to define how NSC differentiation and cell-matrix signaling is altered in 2D and 3D systems. We hypothesize that 3D culture imposes changes in matrix-ligand organization and alters NSC behavior by modulating cytoskeletal signaling and differentiation outcome. To test our hypothesis we cultured mouse embryonic NSCs in 2D and 3D biomaterials and observed differences in cell behavior and β1 -integrin signaling with altered culture dimensionality using immunocytochemistry and flow cytometry. In this study we show that NSCs sense the dimensionality of their environment and alter motility: in 3D, individual cells adapt a random migration pattern and extend longer neurites than in 2D where the cells undergo chain migration. In addition, the differentiation of the NSCs into the neuronal phenotype is increased in 2D vs 3D culture. These results confirm our hypothesis and provide a foundation to design optimal biomaterials towards the development of therapeutics for nerve repair and neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.