Background: In recent years, the maturation of microarray technology has allowed the genomewide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues.
The authors have previously applied two integrated platforms, MetaCore and MetaDrug, for the assembly and analysis of human biological networks as a useful method for the integration and functional interpretation of high-throughput experimental data. The present study demonstrates in detail the specific algorithms that are used in both software platforms. Using a standard set of genes as input, namely CYP3A4 (an enzyme), PXR (a nuclear hormone receptor), MDR1 (a transporter) and hERG (an ion channel) related to the absorption, distribution, metabolism, excretion and toxicity (ADME/Tox) of xenobiotics, we have now generated networks with each algorithm. The relative advantages and disadvantages of these algorithms are explained using these examples as well as appropriate instances of utility to illustrate further the particular circumstances for their use. In addition, the benefits of the different network algorithms are identified when compared with algorithms available in other products, where this information is available.
Depletion of endoplasmic reticulum Ca 2؉ stores leads to the entry of extracellular Ca 2؉ into the cytoplasm, a process termed capacitative or store-operated Ca 2؉ entry. Partially purified extracts were prepared from the human Jurkat T lymphocyte cell line and yeast in which Ca
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.