Immunogold double-labeling and ultrathin cryosections were used to compare the subcellular distribution of albumin, mannose 6-phosphate receptor (MPR), galactosyltransferase, and the lysosomal enzymes cathepsin D, beta-hexosaminidase, and alpha-glucosidase in Hep Gz cells. MPR and lysosomal enzymes were found throughout the stack of Golgi cisternae and in a trans-Golgi reticulum (TGR) of smooth-surfaced tubules with coated buds and vesicles. The trans-Golgi orientation of TGR was ascertained by the co-localization with galactosyltransferase. MPR was particularly abundant in TGR and CURL, the compartment of uncoupling receptors and ligands. Both TGR and CURL also contained lysosomal enzymes, but endogenous albumin was detected in TGR only. The coated buds on TGR tubules contained MPR, lysosomal enzymes, as well as albumin.MPR and lysosomal enzymes were also found in coated pits of the plasma membrane. CURL tubules seemed to give rise to smooth vesicles, often of the multivesicular body type. In CURL, the enzymes were found in the lumina of the smooth vesicles while MPR prevailed in the tubules. These observations suggest a role of CURL in transport of lysosomal enzymes to lysosomes.When the cells were treated with the lysosomotropic amine primaquine, binding of anti-MPR to the cells in culture was reduced by half. Immunocytochemistry showed that MPR accumulated in TGR, especially in coated buds. Since these buds contain endogenous albumin and lysosomal enzymes also, these data suggest that coated vesicles originating from TGR provide for a secretory route in Hep G2 cells and that this pathway is followed by the MPR system as well.Mannnose 6-phosphate receptors (MPR) 1 mediate the selective targeting of newly synthesized lysosomal enzymes to lysosomes. The receptors recognize mannose 6-phosphate residues which are added to the nascent enzyme molecules in, or in association with, the Golgi complex (1). After receptor-ligand binding, the complexes travel via an unknown pathway to the lysosomes. Before enzyme delivery, MPR and ligands uncouple in the acidic internal milieu of some prelysosomal compartment. Uncoupling permits free receptors to be re-used (2). The idea of recycling MPR stems mainly from studies on enzyme uptake by cells. These studies also indicate Abbreviations used in this paper. ASGP, asialoglycoprotein; CHO, Chinese hamster ovary; CURL, compartment of uncoupling receptors and ligands; GERL, region of smooth endoplasmic retieulum at the inner or trans-face of the Golgi stack; MPR, mannose 6-phosphate receptors; mvb's, multivesicular bodies; TGR, trans-Golgl reticulum.
We searched for novel proteins in lysosomal membranes, tentatively participating in molecular transport across the membrane and/or in interactions with other compartments. In membranes purified from placental lysosomes, we identified 58 proteins, known to reside at least partially in the lysosomal membrane. These included 17 polypeptides comprising or associated with the vacuolar adenosine triphosphatase. We report on additional 86 proteins that were significantly enriched in the lysosomal membrane fraction. Among these, 12 novel proteins of unknown functions were found. Three were orthologues of rat proteins that have been identified in tritosomes by Bagshaw RD et al. (A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol Cell Proteomics 2005;4:133-143). Here, the proteins encoded by LOC201931 (FLJ38482) and LOC51622 (C7orf28A) were expressed with an appended fluorescent tag in HeLa cells and found to be present in lysosomal organelles. Among the lysosomally enriched proteins, also 16 enzymes and transporters were detected that had not been assigned to lysosomal membranes previously. Finally, our results identified a particular set of proteins with known functions in signaling and targeting to be at least partially associated with lysosomes.
Lysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling. Lysosomal proteins have been addressed in various proteomic studies that are compared in this review regarding the source of material, the organelle/protein purification scheme, the proteomic methodology applied and the proteins identified. Distinguishing true constituents of an organelle from co-purifying contaminants is a central issue in subcellular proteomics, with additional implications for lysosomes as being the site of degradation of many cellular and extracellular proteins. Although many of the lysosomal hydrolases were identified by classical biochemical approaches, the knowledge about the protein composition of the lysosomal membrane has remained fragmentary for a long time. Using proteomics many novel lysosomal candidate proteins have been discovered and it can be expected that their functional characterisation will help to understand functions of lysosomes at a molecular level that have been characterised only phenomenologically so far and to generally deepen our understanding of this indispensable organelle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.