The article deals with the problem of pool boiling heat transfer enhancement on metal wire mesh coatings made of copper and phosphor bronze at nucleate boiling of distilled water and high purity ethyl alcohol under ambient pressure. The tests have been performed on horizontal samples containing different microstructures produced with the sintering technology. The samples were attached to the heating block with soldering. As a result of the experiments, boiling curves were obtained, describing the relationship between the dissipated heat flux and the superheat values for each specimen. A considerable augmentation of heat flux has been recorded for the meshed surfaces in relation to the smooth reference surface without any coating. Generally, the highest enhancement was recorded for the low superheat values. The presented test results have been discussed and then compared with selected correlations available in literature for nucleate boiling heat transfer on microstructure coated surfaces.
Abstract. The paper discusses the issue of boiling heat transfer augmentation on phosphor bronze wire mesh coatings during nucleate boiling heat transfer for distilled water and ethyl alcohol under ambient pressure. A significant enhancement of heat flux has been recorded for such treated surfaces in comparison to the smooth reference surface. The obtained results have been discussed and compared with models and correlations available in literature.
A membrane-based enthalpy exchanger is a device used for heat and humidity recovery in ventilated buildings. The energy-saving potential of such a device is dependent on the parameters responsible for heat and moisture recovery. The trend is toward composite membranes, which are custom produced, and their parameters can be adjusted for a given application; therefore, the diffusion and sorption characteristics of such membranes are unknown. In order to obtain the values of the water vapor diffusivity of three investigated handmade membranes, a serial resistance model using a Field and Laboratory Emission Cell (FLEC) is proposed. Experiments were conducted to identify the resistance in each step of the moisture transfer process to extract the moisture diffusivity in the membranes. The calculated moisture diffusivities in the membranes were 8.99 × 10−12 (m2/s) for the membranes from cellulose acetate, 1.9 × 10−10 (m2/s) for the microporous PE/PUR membranes, and 1.53 × 10−11 (m2/s) for the PET/PUR microfibrous membranes. The obtained membrane diffusivities were then used in the proposed effectiveness-NTU-based model of an exchanger with a cross-flow arrangement to predict performance under various operating conditions. The results show that the highest latent effectiveness was found for the exchanger core made from the PE/PUR membrane and the lowest was for the one with the PE/PUR membrane core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.