GABA and glycine are the major inhibitory transmitters that attune neuronal activity in the CNS of mammals. The respective transmitters are mostly spatially separated, that is, synaptic inhibition in the forebrain areas is mediated by GABA, whereas glycine is predominantly used in the brainstem. Accordingly, inhibition in auditory brainstem circuits is largely mediated by glycine, but there are few auditory synapses using both transmitters in maturity. Little is known about physiological advantages of such a two-transmitter inhibitory mechanism. We explored the benefit of engaging both glycine and GABA with inhibition at the endbulb of Held-spherical bushy cell synapse in the auditory brainstem of juvenile Mongolian gerbils. This model synapse enables selective in vivo activation of excitatory and inhibitory neuronal inputs through systemic sound stimulation and precise analysis of the input (endbulb of Held) output (spherical bushy cell) function. The combination of in vivo and slice electrophysiology revealed that the dynamic AP inhibition in spherical bushy cells closely matches the inhibitory conductance profile determined by the glycine-R and GABA A -R. The slow and potent glycinergic component dominates the inhibitory conductance, thereby primarily accounting for its high-pass filter properties. GABAergic transmission enhances the inhibitory strength and shapes its duration in an activity-dependent manner, thus increasing the inhibitory potency to suppress the excitation through the endbulb of Held. Finally, in silico modeling provides a strong link between in vivo and slice data by simulating the interactions between the endbulb-and the synergistic glycine-GABA-conductances during in vivo-like spontaneous and sound evoked activities.
The present study was undertaken to examine spatial and temporal patterns of oxidative stress rate in the brain of Mongolian gerbils submitted to different duration of global ischemia/reperfusion. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. We followed the temporal ischemia-induced oxidative stress rate, the most important factor that exacerbates brain damage by reperfusion, starting from 24 h up to 28 days after reperfusion. The spatial ischemia-induced oxidative stress distribution was measured parallely in different brain regions: forebrain cortex, striatum, hippocampus and cerebellum. Post-ischemic effects were followed in vivo by monitoring the neurological status of whole animals and at the intracellular level by standard biochemical assays in different brain regions. We measured superoxide production, superoxide dismutase activity, nitric oxide production, index of lipid peroxidation, and reduced glutathione. Our results revealed a pattern of dynamic changes in each oxidative stress parameter that corresponded with ischemia duration in all tested brain structures. The highest levels were obtained in the first 24h after the insult. After that, they slowly returned to nearly control values 28 days after reperfusion (with the exception of SOD activity that returned to control values at fourth day after reperfusion). The most sensitive oxidative stress parameter was index of lipid peroxidation. Our study confirmed spatial distribution of ischemia-induced oxidative stress. Tested brain structures showed different sensitivity to each oxidative stress parameter, although their basal levels were similar. These new findings could be valuable for creation and strategy of post-ischemic therapy.
Post-ischemic injury of the hippocampus unrolls at different levels and has both functional and structural implications. The deficiency in neuron energy metabolism is an initiating factor. We performed transmission electron microscopic (TEM) comparative analysis of mitochondria in excitatory spine synapses in CA1 stratum radiatum and CA3 hippocampal areas after 5 min of global cerebral ischemia in Mongolian gerbils, 4 and 7 days after reperfusion. Electron microscopy and unbiased morphometric methods were used to evaluate synaptic plasticity, and the number and size of mitochondria in synaptic terminals. We compared the morphological organization of mitochondria in presynaptic terminals between CA1 and CA3 areas in control and post-ischemic condition according to the following morphometric parameters: mitochondrial volume fraction, mitochondrial frequency in CA1 and CA3 terminals, mean number of mitochondria per presynaptic terminal, frequency of damaged mitochondria in terminals, and density of presynaptic terminals. Our ultrastructural study revealed statistically significant differences in morphometric parameters between CA1 and CA3 areas in control conditions, as well as in post-ischemic conditions. Also, we found temporal differences in measured parameters obtained 4 and 7 days after reperfusion. This study showed significant morphological differences in the organization of mitochondria in excitatory spine synapses between CA1 and CA3 areas, which corresponded with already known differences in functionality and sensitivity to the ischemic insult. Our conclusion is that revealed post-ischemic changes in mitochondrial distribution in presynaptic CA1 and CA3 terminals could be an indicator of hippocampal metabolic dysfunction and synaptic plasticity. Anat Rec, 294:1057Rec, 294: -1065Rec, 294: , 2011. V V C 2011 Wiley-Liss, Inc.
Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψm) in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both conditions varying in duration and sequence. Changes in Δψm, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψm during reperfusion, whereas GD caused a robust Δψm negativation. In case no Δψm negativation was observed after OGD, subsequent chemical oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψm hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen) and their hyperpolarizing effect on Δψm during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.