Research Highlights: Bark beetles are important agents of disturbance regimes in temperate forests, and specifically in a connected wind-bark beetle disturbance system. Large-scale windthrows trigger population growth of the European spruce bark beetle (Ips typographus L.) from endemic to epidemic levels, thereby allowing the killing of Norway spruce trees over several consecutive years. Background and Objectives: There is a lack of evidence to differentiate how outbreaks are promoted by the effects of environmental variables versus beetle preferences of trees from endemic to outbreak. However, little is known about how individual downed-tree characteristics and local conditions such as tree orientation and solar radiation affect beetle colonization of downed trees. Materials and Methods: To answer this question, we investigated the infestation rates and determined tree death categories (uprooted, broken, and stump) in wind-damaged areas in Western Tatra Mts. in Carpathians (Slovakia) from 2014–2016, following a windthrow in May 2014. In total, we investigated 225 trees over eight transects. For every tree, we measured its morphological (tree height, crown characteristics), environmental (solar radiation, terrain conditions, trunk zenith), temporal (time since wind damage), and beetle infestation (presence, location of attack, bark desiccation) parameters. We applied Generalized Additive Mixed Models (GAMM) to unravel the main drivers of I. typographus infestations. Results: Over the first year, beetles preferred to attack broken trees and sun-exposed trunk sides over uprooted trees; the infestation on shaded sides started in the second year along with the infestation of uprooted trees with lower desiccation rates. We found that time since wind damage, stem length, and incident solar radiation increased the probability of beetle infestation, although both solar radiation and trunk zenith exhibited nonlinear variability. Our novel variable trunk zenith appeared to be an important predictor of bark beetle infestation probability. We conclude that trunk zenith as a simple measure defining the position of downed trees over the terrain can anticipate beetle infestation. Conclusions: Our findings contribute to understanding of the bark beetle’s preferences to colonize windthrown trees in the initial years after the primary wind damage. Further, our findings can help to identify trees that are most susceptible to beetle infestation and to prioritize management actions to control beetle population while maintaining biodiversity.
Protection of Norway spruce stands using anti-attractants was tested during an outbreak of bark beetles (Ips typographus) in their spring flight. The aims of this study were as follows: (1) to test the proposed experimental design for tree protection; (2) to evaluate height-specific alternatives for dispenser installation on trees; and (3) to evaluate the efficiency of tree protection measures using anti-attractants under bark beetle infestation and drought stress. The experiment was conducted at the forest edges adjacent to recent clearcuts on 10 blocks in the eastern Czech Republic. Each block had three adjacent experimental areas, with 20 trees growing in two rows at the recently cut forest edge (10 trees per row). In front of a block in each of the three areas, four pheromone traps were installed. The treatment area was protected by anti-attractants. The second area served as a so-called switch area, where beetles from the treatment area, as the outflux redirected from the anti-attractant, would start new attacks if not caught in nearby pheromone traps. The third area was a control. We attached anti-attractant tube dispensers on each tree trunk of the treated area at two heights. The results suggest a redirecting effect of anti-attractants, pushing beetles into the switch area and causing subsequent attacks, which was greater than in areas containing treated trees. There was no difference between two dispensers placed at 1 and 8 m height and both at 1 m. A switching effect of beetle attacks occurring outside of the treated areas was observed. Mounting anti-attractant dispensers on tree trunks at one low position above the ground can be substantially less labour-intensive and as efficient as positioning them at two different heights. For areas affected by severe drought and extremely dense bark beetle populations, the use of anti-attractants did not prove effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.