The widespread emergence of pathogenic bacterial strains with resistance to antibiotics is becoming a serious threat to public health. Continuous development of novel antibacterials therefore remains one of the biggest challenges to science and unmet needs in the clinics. The biosynthetic pathway of bacterial peptidoglycan, an essential building block of cell walls, has been well studied and appears to be a rich source of attractive enzyme targets for new antibacterials. We have therefore reviewed the intracellular part of peptidoglycan biosynthesis, including the enzymes GlmS, GlmM, GlmU for formation of UDP-GlcNAc, subsequent pentapeptide synthesis by MurA-MurF, and its connection to lipid carrier by MraY and MurG. Naturally occurring inhibitors and the development of low-molecular weight inhibitors of the intracellular part of peptidoglycan synthesis are presented.
Clenbuterol and other beta-agonists are commonly misused as repartitioning agents in meat production and as doping substances to improve athletic performance. Numerous reports on food poisoning throughout Europe prompted the EU regulatory offices and FDA to implement a ban on the use of beta-agonists as growth promoters. Several analytical methods have been developed for detecting illegal administration of these compounds, based mainly on chromatography and immunoassay screening. This article deals with the pharmacological aspect of beta-agonists in growth promotion, control of their abuse and methods of analysis.
A wide variety of pathogens have acquired antimicrobial resistance as an inevitable evolutionary response to the extensive use of antibacterial agents. In particular, one of the most widely used antibiotic structural classes is the beta-lactams, in which the most common and the most efficient mechanism of bacterial resistance is the synthesis of beta-lactamases. Class C beta-lactamase enzymes are primarily cephalosporinases, mostly chromosomally encoded, and are inducible by exposure to some beta-lactam agents and resistant to inhibition by marketed beta-lactamase inhibitors. In an ongoing effort to alleviate this problem a series of novel 4-substituted trinems was designed and synthesized. Significant in vitro inhibitory activity was measured against the bacterial beta-lactamases of class C and additionally against class A. The lead compound LK-157 was shown to be a potent mechanism-based inactivator. Acylation of the active site Ser 64 of the class C enzyme beta-lactamase was observed in the solved crystal structures of two inhibitors complexes to AmpC enzyme from E. cloacae. Structure-activity relationships in the series reveal the importance of the trinem scaffold for inhibitory activity and the interesting potential of the series for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.