The elastocaloric cooling, utilizing latent heat associated with martensitic transformation in shape-memory alloys, is being considered in the recent years as one of the most promising alternatives to vapour compression cooling technology. It can be more efficient and completely harmless to the environment and people. In the first part of this work, the basics of the elastocaloric effect (eCE) and the state-of-the-art in the field of elastocaloric materials and devices are presented. In the second part, we are addressing crucial challenges in designing active elastocaloric regenerators, which are currently showing the largest potential for utilization of eCE in practical devices. Another key component of elastocaloric technology is a driver mechanism that needs to provide loading for active elastocaloric regenerators in an efficient way and recover the released energy during their unloading. Different driver mechanisms are reviewed and the work recovery potential is discussed in the third part of this work.
Structural fatigue is the major obstacle that prevents practical applications of the elastocaloric effect (eCE) in cooling or heat-pumping devices. Here, the eCE and fatigue behaviour of Ni-Ti sheets are systematically investigated in order to define the material's fatigue strain limit and the associated eCE. Initially, the eCE was evaluated by measuring adiabatic temperature changes at different strain amplitudes and different mean strains along the loading and unloading transformation plateaus. By comparing the eCE with and without pre-strain conditions, the advantages of cycling an elastocaloric material at the mean strain around the middle of the transformation plateau were demonstrated. In the second part of this work, we evaluated the fatigue life at the mean strain of 2.25% within the loading plateau and at the unloading plateau after initial pre-straining up to 6% and 10%, respectively. It is shown that on polished samples, durable operation of 10 5 cycles can be reached with a strain amplitude of 0.50% at the loading plateau, which corresponds to adiabatic temperature changes of approximately 5 K. At the unloading plateau (after initial pre-strain of 10%), durable 1 operation was reached at a strain amplitude of 1.00%, corresponding to adiabatic temperature changes of approximately 8 K. The functional fatigue was analysed after the cycling and it is shown that once the sample has been stabilized there is no further degradation of the eCE, even after 10 5 cycles. These results present guidelines for the design and operation of efficient and durable elastocaloric devices in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.