A study of 250 commercial drugs to act as corrosion inhibitors on steel has been developed by applying the quantitative structure-activity relationship (QSAR) paradigm. Hard-soft acid-base (HSAB) descriptors were used to establish a mathematical model to predict the corrosion inhibition efficiency (IE%) of several commercial drugs on steel surfaces. These descriptors were calculated through third-order density-functional tight binding (DFTB) methods. The mathematical modeling was carried out through autoregressive with exogenous inputs (ARX) framework and tested by fivefold cross-validation. Another set of drugs was used as an external validation, obtaining SD, RMSE, and MSE, obtaining 6.76%, 3.89%, 7.03%, and 49.47%, respectively. With a predicted value of IE% = 87.51%, lidocaine was selected to perform a final comparison with experimental results. By the first time, this drug obtained a maximum IE%, determined experimentally by electrochemical impedance spectroscopy measurements at 100 ppm concentration, of about 92.5%, which stands within limits of 1 SD from the predicted ARX model value. From the qualitative perspective, several potential trends have emerged from the estimated values. Among them, macrolides, alkaloids from Rauwolfia species, cephalosporin, and rifamycin antibiotics are expected to exhibit high IE% on steel surfaces. Additionally, IE% increases as the energy of HOMO decreases. The highest efficiency is obtained in case of the molecules with the highest ω and ΔN values. The most efficient drugs are found with pKa ranging from 1.70 to 9.46. The drugs recurrently exhibit aromatic rings, carbonyl, and hydroxyl groups with the highest IE% values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.