Reliability assessment in traditional power distribution systems has played a key role in power system planning, design, and operation. Recently, new information and communication technologies have been introduced in power systems automation and asset management, making the distribution network even more complex. In order to achieve efficient energy management, the distribution grid has to adopt a new configuration and operational conditions that are changing the paradigm of the actual electrical system. Therefore, the emergence of the cyber-physical systems concept to face future energetic needs requires alternative approaches for evaluating the reliability of modern distribution systems, especially in the smart grids environment. In this paper, a reliability approach that makes use of failure modes of power and cyber network main components is proposed to evaluate risk analysis in smart electrical distribution systems. We introduce the application of Failure Modes and Effects Analysis (FMEA) method in future smart grid systems in order to establish the impact of different failure modes on their performance. A smart grid test system is defined and failure modes and their effects for both power and the cyber components are presented. Preventive maintenance tasks are proposed and systematized to minimize the impact of high-risk failures and increase reliability.
In this paper, we introduce the application of Type-I fuzzy inference systems (FIS) as an alternative to improve the prioritization in the FMECA analysis applied in cyber-power grids. Classical FMECA assesses the risk level through the Risk Priority Number (RPN). The multiplication between three integer numbers computes this, called risk factors, representing the severity, occurrence, and detectability of each failure mode and are defined by a team of experts. The RPN does not consider any relative importance between the risk factors and may not necessarily represent the real risk perception of the FMECA team members, usually expressed by natural language; this is the main FMECA shortcoming criticized in the literature. Our approach considers fuzzy variables defined by FMECA experts to represent the uncertainty associated with the human language and a rule base consisting of 125 fuzzy rules to represent the risk perception of the experts. To test our approach, we select a cyber-power grid previously analyzed by the authors using the classical FMECA. The results reveal our proposed fuzzy approach as promissory to represent the uncertainty associated with expert knowledge and to perform an accurate prioritization of failure modes in the context of electrical power systems.
Reliability assessment in traditional power distribution systems has played a key role in power system planning, design, and operation. Recently, new information and communication technologies have been introduced in power systems automation and asset management, making the distribution network even more complex. In order to achieve efficient energy management, the distribution grid has to adopt a new configuration and operational conditions that are changing the paradigm of the actual electrical system. Therefore, the emergence of the cyber-physical systems concept to face future energetic needs requires alternative approaches for evaluating the reliability of modern distribution systems, especially in the smart grids environment. In this paper, a reliability approach that makes use of failure modes of power and cyber network main components is proposed to evaluate risk analysis in smart electrical distribution systems. We introduce the application of Failure Modes and Effects Analysis (FMEA) method in future smart grid systems in order to establish the impact of different failure modes on their performance. A smart grid test system is defined and failure modes and their effects for both power and the cyber components are presented. Preventive maintenance tasks are proposed and systematized to minimize the impact of high-risk failures and increase reliability.
<p>Commonly, the efficacy of new FMECA methods is conducted through qualitative comparisons between rankings; for a small number of failure modes, this approach is suitable but can become unpractical or lead to misleading results for more extensive problems. This fact motivated us to introduce an alternative approach to compare different FMECA methods based on agreement metrics that allow the statistical comparison between rankings generated by independent raters. Despite its relevance, the application of agreement coefficients is limited in the FMECA context. The proposed approach considers the agreement assessment between different methodologies used in FMECA analysis (Risk Priority Isosurfaces RPI, VIKOR, ITWH, and Type-II Fuzzy Inference System) when applied to a study case regarding blood transfusion widely used in the literature for benchmarking and consisting of eleven failure modes. We selected the RPI methods as a reference to compare the other forenamed methods. Results show that our agreement coefficient-based comparison approach proves effective for the statistical comparison of different FMECA methods instead of the rankings qualitative comparison.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.