Anthocyanins are flavonoid pigments synthesized in the cytoplasm and stored inside vacuoles. Many plant species accumulate densely packed, 3-to 10-mm diameter anthocyanin deposits called anthocyanin vacuolar inclusions (AVIs). Despite their conspicuousness and importance in organ coloration, the origin and nature of AVIs have remained controversial for decades. We analyzed AVI formation in cotyledons of different Arabidopsis thaliana genotypes grown under anthocyanin inductive conditions and in purple petals of lisianthus (Eustoma grandiorum). We found that cytoplasmic anthocyanin aggregates in close contact with the vacuolar surface are directly engulfed by the vacuolar membrane in a process reminiscent of microautophagy. The engulfed anthocyanin aggregates are surrounded by a single membrane derived from the tonoplast and eventually become free in the vacuolar lumen like an autophagic body. Neither endosomal/prevacuolar trafficking nor the autophagy ATG5 protein is involved in the formation of AVIs. In Arabidopsis, formation of AVIs is promoted by both an increase in cyanidin 3-O-glucoside derivatives and by depletion of the glutathione S-transferase TT19. We hypothesize that this novel microautophagy mechanism also mediates the transport of other flavonoid aggregates into the vacuole.
SUMMARYIn addition to the classical functions of flavonoids in the response to biotic/abiotic stress conditions, these phenolic compounds have been implicated in the modulation of various developmental processes. These findings suggest that flavonoids are more integral components of the plant signaling machinery than traditionally recognized. To understand how flux through the flavonoid pathway affects plant cellular processes, we used wild-type and chalcone isomerase mutant (transparent testa 5, tt5) seedlings grown under anthocyanin inductive conditions, in the presence or absence of the flavonoid intermediate naringenin, the product of the chalcone isomerase enzyme. Because flavonoid biosynthetic genes are expressed under anthocyanin inductive conditions regardless of whether anthocyanins are formed or not, this system provides an excellent opportunity to specifically investigate the molecular changes associated with increased flux through the flavonoid pathway. By assessing genome-wide mRNA accumulation changes in naringenin-treated and untreated tt5 and wild-type seedlings, we identified a flavonoid-responsive gene set associated with cellular trafficking, stress responses and cellular signaling. Jasmonate biosynthetic genes were highly represented among the signaling pathways induced by increased flux through the flavonoid pathway. In contrast to studies showing a role for flavonoids in the control of auxin transport, no effect on auxinresponsive genes was observed. Taken together, our data suggest that Arabidopsis can sense flavonoids as a signal for multiple fundamental cellular processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.