This work presents the data experimentally collected in a chemical laboratory for the calibration of a graduated cylinder. There are several factors that can influence the volume measurement using this type of instrument and, consequently, its metrological reliability, for example: the internal geometry, the environmental conditions (ambient temperature, atmospheric pressure and relative humidity), the acceleration of gravity, the density of the air, among others. For the data collection it was necessary to use a glass liquid thermometer (Range: 0–10 °C), a digital thermohygrometer (Range: 0–100 °C and 0–99%RH) and a digital barometer (Range: 0–9999 mbar). Additionally, an analytical scale (Range: 0–220 g) was used for mass measurement. From the measurements obtained, it was possible to determine the in-situ air density and the buoyancy factor that influences the mass measurement. The data, rigorously obtained, present a potential use to determine the metrological reliability of a graduated cylinder for laboratory use and, additionally, contribute to perform a metrological validation of alternative methods for the calibration of graduated cylinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.