The reactor material strongly affects coke formation during steam cracking of hydrocarbons. Therefore, in the past decade several specialized reactor materials have been developed that have proven to be efficient in reducing coke formation for ethane steam cracking. However, their beneficial anticoking properties are questioned when heavier feedstocks such as naphtha are cracked. Therefore, the effect of the composition of the reactor material has been investigated for ethane and naphtha cracking in an electrobalance setup under industrially relevant conditions. A significant reduction of coke formation is obtained for specialized alloys compared to typical Fe–Cr–Ni heat resistant steels when a sulfur-free naphtha is cracked. A thin layer of alumina on the surface along with manganese chromite provides the highest resistance to coking, as was demonstrated by the SEM and EDX analyses. The decrease in coking rate translates in a run length increase of 50% for a typical naphtha furnace equipped with reactors made out of an Al-enhanced alloy instead of typically applied heat resistant steel.
Although steam cracking is a mature technology, mitigation of coke formation remains one of the main challenges in the petrochemical industry. To increase the olefin output of existing plants, coil materials that can withstand higher temperatures are desired. This work reviews material technologies that were developed and tested in the past three decades to minimize the rate of coke deposition and extend the furnace run length. The material not only determines the mechanical properties of the coil but also affects the coking rate substantially. In some cases, differences in coking rates by more than a factor 10 have been observed. SiC materials could be operated at significantly higher temperatures, and this leads to higher olefin selectivity if one includes acetylene hydrogenation; however, the mechanical joints make it currently impossible to take advantage of their superior temperature resistance. On the industrial scale, operational improvements have been reported with advanced reactor surface technologies such as high-performance alloys and coatings during the past decade. Catalytic coatings go a step further than barrier coatings by actively removing coke that is deposited on the coils. Another trend is to add aluminum to the coil material, which forms a protective aluminum oxide layer on the reactor wall during operation and results in reduced carburization. To optimize the coking mitigation capabilities of the coils, the state-of-the-art materials and/or coatings should be combined with 3D reactor technologies, which is not always possible for all materials because of the advanced machining that is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.