SummaryDysfunction of lymphatic valves underlies human lymphedema, yet the process of valve morphogenesis is poorly understood. Here, we show that during embryogenesis lymphatic valve leaflet formation is initiated by upregulation of integrin-α9 expression and deposition of its ligand, fibronectin-EIIIA (FN-EIIIA), in the extracellular matrix. Endothelial cell specific deletion of Itga9 (encoding integrin-α9) in mouse embryos results in the development of rudimentary valve leaflets, characterized by disorganized FN matrix, short cusps and retrograde lymphatic flow. Similar morphological and functional defects are observed in mice lacking the EIIIA domain of FN. Mechanistically, we demonstrate that in primary human lymphatic endothelial cells the integrin-α9-EIIIA interaction directly regulates FN fibril assembly, which is essential for the formation of the extracellular matrix core of valve leaflets. Our findings reveal an important role for integrin-α9 signaling during lymphatic valve morphogenesis and implicate it as a candidate gene for primary lymphedema caused by valve defects.
Fibronectins (FNs) are multifunctional high molecular weight glycoproteins present in the blood plasma and in the ECMs of tissues. The FN primary transcript undergoes alternative splicing in three regions generating up to 20 main different variants in humans. However, the precise role of the FN isoforms is poorly understood. One of the alternatively spliced exons is the extra domain A (EDA) or extra type III homology that is regulated spatially and temporally during development and aging. To study its in vivo function, we generated mice devoid of EDA exon-regulated splicing. Constitutive exon inclusion was obtained by optimizing the splice sites, whereas complete exclusion was obtained after in vivo CRE-loxP–mediated deletion of the exon. Homozygous mouse strains with complete exclusion or inclusion of the EDA exon were viable and developed normally, indicating that the alternative splicing at the EDA exon is not necessary during embryonic development. Conversely, mice without the EDA exon in the FN protein displayed abnormal skin wound healing, whereas mice having constitutive inclusion of the EDA exon showed a major decrease in the FN levels in all tissues. Moreover, both mutant mouse strains have a significantly shorter lifespan than the control mice, suggesting that EDA splicing regulation is necessary for efficient long-term maintenance of biological functions.
The extracellular matrix (ECM) is a highly dynamic structure that not only provides a physical framework for cells within connective tissues, but also imparts instructive signals for development, tissue homeostasis and basic cell functions through its composition and ability to exert mechanical forces. The ECM of tissues is composed of, in addition to proteoglycans and hyaluronic acid, a number of proteins, most of which are generated after alternative splicing of their pre-mRNA. However, the precise function of these protein isoforms is still obscure in most cases. Fibronectin (FN), one of the main components of the ECM, is also one of the best-known examples of a family of proteins generated by alternative splicing, having at least 20 different isoforms in humans. Over the last few years, considerable progress on elucidating the functions of the alternatively spliced FN isoforms has been achieved with the essential development of key engineered mouse strains. Here we summarize the phenotypes of the mouse strains having targeted mutations in the FN gene, which may lead to novel insights linking function of alternatively spliced isoforms of fibronectin to human pathologies.
Rationale: Tissue fibrosis is considered a dysregulated wound-healing response. Fibronectin containing extra type III domain A (EDA) is implicated in the regulation of wound healing. EDA-containing fibronectin is deposited during wound repair, and its presence precedes that of collagen. Objectives: To investigate the role of EDA-containing fibronectin in lung fibrogenesis. Methods: Primary lung fibroblasts from patients with idiopathic pulmonary fibrosis or from patients undergoing resection for lung cancer were assessed for EDA-containing fibronectin and a-smooth muscle actin (a-SMA) expression. Mice lacking the EDA domain of fibronectin and their wild-type littermates were challenged with the bleomycin model of lung fibrosis. Primary lung fibroblasts from these mice were assayed in vitro to determine the contribution of EDA-containing fibronectin to fibroblast phenotypes. Measurements and Main Results: Idiopathic pulmonary fibrosis lung fibroblasts produced markedly more EDA-containing fibronectin and a-SMA than control fibroblasts. EDA-null mice failed to develop significant fibrosis 21 days after bleomycin challenge, whereas wildtype controls developed the expected increase in total lung collagen. Histologic analysis of EDA-null lungs after bleomycin showed less collagen and fewer a-SMA-expressing myofibroblasts compared with that observed in wild-type mice. Failure to develop lung fibrosis in EDA-null mice correlated with diminished activation of latent transforming growth factor (TGF)-b and decreased lung fibroblast responsiveness to active TGF-b in vitro. Conclusions: The data show that EDA-containing fibronectin is essential for the fibrotic resolution of lung injury through TGF-b activation and responsiveness, and suggest that EDA-containing fibronectin plays a critical role in tissue fibrogenesis.Keywords: fibrosis; fibronectin; TGF-b; myofibroblast Fibroproliferative disorders, characterized by the increased production and deposition of extracellular matrix (ECM) proteins in tissues, are not well understood despite major efforts to elucidate pathogenic mechanisms. Recent attention has focused on ECM components and mesenchymal cell phenotypes as being critical to the development of fibrosis (1, 2). The ECM is a highly dynamic complex that varies in composition according to its tissue localization and physiologic circumstances. Collagens are the predominant ECM proteins identified in fibrotic lesions and are the hallmark of fibroproliferative diseases, but fibronectins (FNs) are also present in abnormally large quantities and localize to areas of active fibrogenesis (3, 4).FNs are multifunctional glycoproteins found in the ECM of tissues and plasma. Two main forms of FN exist: plasma FN, a dimeric and soluble form produced by hepatocytes that lacks the EDA and EDB sequences, and cellular FN (cFN), a multimeric form synthesized by mesenchymal, epithelial, and inflammatory cells, which is deposited in ECM fibrils and that contains variable proportions of the extra type III domains A and B (EDA and EDB) (5...
Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.—Bortolussi, G., Zentilin, L., Baj, G., Giraudi, P., Bellarosa, C., Giacca, M., Tiribelli, C., Muro, A. F. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.