Rhinosporidiosis is caused by Rhinosporidium seeberi, a pathogen currently considered a fungus-like parasite of the eukaryotic group Mesomycetozoea. It is usually a benign condition, with slow growth of polypoid lesions, with involvement of the nose, nasopharynx, or eyes. The clinical characteristics of a painless, friable, polypoid mass, usually unilateral, can guide the diagnosis, but the gold standard for diagnosis is histopathological findings. This article reviews the epidemiology, pathobiology, clinical manifestations, diagnostic strategies, and treatment approach for rhinosporidiosis.
In this study, a probabilistic approach for the optimal charging of electric vehicles (EVs) in distribution systems is proposed. The costs of both demand and energy losses in the system are minimised, subjected to a set of constraints that consider EVs smart charging characteristics and operative aspects of the electric network. The stochastic driving patterns for EVs' owners, battery capacity and active and reactive power demanded at load nodes are considered. The optimal charging of EVs connected to the system benefits the system's operation, as it does a strategy to minimise the cost of energy losses and evaluate the capability of the system to charge EVs' batteries fully under certain penetration scenarios. Priority periods of EVs' recharge and the variation of energy price contribute to an adequate demand response, assisting the network operator for complying with quality indices (decrement of power losses) set forward by regulatory entities and developing studies of risk analysis for decision making. On the other hand, there is a valuable participation of the EVs' owners in improving the operation of the distribution system. Monte Carlo simulation (MCS) is used to assess the stochastic nature of the problem in a secondary (low voltage) distribution network.
A novel concept of on-chip bondwire inductors and transformers with ferrite epoxy glob coating is proposed to offer a cost effective approach realizing power systems on chip (SOC). We have investigated the concept both experimentally and with finite element modeling. A Q factor of 30–40 is experimentally demonstrated for the bondwire inductors which represents an improvement by a factor of 3–30 over the state-of-the-art MEMS micromachined inductors. Transformer parameters including self- and mutual inductance and coupling factors are extracted from both modeled and measured S-parameters. More importantly, the bondwire magnetic components can be easily integrated into SOC manufacturing processes with minimal changes and open enormous possibilities for realizing cost-effective, high-current, high-efficiency power SOCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.