Aims. It has been shown that the ultra-faint dwarf galaxy Eridanus 2 may host a stellar cluster in its centre. If this cluster is shown to exist, it can be used to set constraints on the mass and abundance of massive astrophysical compact halo objects (MACHOs) as a form of dark matter. Previous research has shown promising expectations in the mass range of 10−100 M⊙, but lacked spectroscopic measurements of the cluster. We aim to provide spectroscopic evidence regarding the nature of the putative star cluster in Eridanus 2 and to place constraints on MACHOs as a constituent of dark matter. Methods. We present spectroscopic observations of the central square arcminute of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with the Multi Unit Spectroscopic Explorer on the Very Large Telescope. We derived line-of-sight velocities for possible member stars of the putative cluster and for stars in the centre of Eridanus 2. We discuss the existence of the cluster and determine new constraints for MACHOs using the Fokker–Planck diffusion approximation. Results. Out of 182 extracted spectra, we identify 26 member stars of Eridanus 2, seven of which are possible cluster members. We find intrinsic mean line-of-sight velocities of 79.7+3.1−3.8 km s−1 and 76.0+3.2−3.7 km s−1 for the cluster and the bulk of Eridanus 2, respectively, as well as intrinsic velocity dispersions of < 7.6 km s−1 (68% upper limit) and 10.3+3.9−3.2 km s−1, respectively. This indicates that the cluster most likely exists as a distinct dynamical population hosted by Eridanus 2 and that it does not have a surplus of dark matter over the background distribution. Among the member stars in the bulk of Eridanus 2, we find possible carbon stars, alluding to the existence of an intermediate-age population. We derived constraints on the fraction of dark matter that can consist of MACHOs with a given mass between 1 and 105 M⊙. For dark matter consisting purely of MACHOs, the mass of the MACHOs must be less than ∼7.6 M⊙ and ∼44 M⊙ at a 68- and 95% confidence level, respectively.
Emission from active galactic nuclei (AGNs) is known to play an important role in the evolution of many galaxies including luminous and ultraluminous systems (U/LIRGs), as well as merging systems. However, the extent, duration, and exact effects of its influence are still imperfectly understood. To assess the impact of AGNs on interacting systems, we present a Spectral Energy Distribution (SED) analysis of a sample of 189 nearby galaxies. We gather and systematically re-reduce archival broad-band imaging mosaics from the ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE, Spitzer and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes from fine-structure lines that trace star formation and AGN activity. Utilizing the SED modelling and fitting tool cigale, we derive the physical conditions of the ISM, both in star-forming regions and in nuclear regions dominated by the AGN in these galaxies. We investigate how the star formation rates (SFRs) and the fractional AGN contributions (fAGN) depend on stellar mass, galaxy type, and merger stage. We find that luminous galaxies more massive than about $10^{10} \rm {M}_{*}$ are likely to deviate significantly from the conventional galaxy main-sequence relation. Interestingly, infrared AGN luminosity and stellar mass in this set of objects are much tighter than SFR and stellar mass. We find that buried AGNs may occupy a locus between bright starbursts and pure AGNs in the fAGN-[Ne v]/[Ne ii] plane. We identify a modest correlation between fAGN and mergers in their later stages.
Galaxy mergers are key events in galaxy evolution, often causing massive starbursts and fueling active galactic nuclei (AGN). In these highly dynamic systems, it is not yet precisely known how much starbursts and AGN respectively contribute to the total luminosity, at what interaction stages they occur, and how long they persist. Here we estimate the fraction of the bolometric infrared (IR) luminosity that can be attributed to AGN by measuring and modeling the full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to 33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers, found in the Infrared Astronomical Satellite Revised Faint Source Catalog, our sample includes a comparison sample of 12 galaxy mergers from the Spitzer Interacting Galaxies Survey, mostly early stage. We also SED modeling of merger simulations to validate our methods, and we supplement the SEDs with mid-IR spectra of diagnostic lines obtained with Spitzer 's InfraRed Spectrograph. The estimated AGN contributions to the IR luminosities vary from system to system from 0% up to ∼91% but are significantly greater in the later-stage, more luminous mergers, consistent with what is known about galaxy evolution and AGN triggering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.