The metabolic state of stem cells is emerging as an important determinant of their fate. In the bone marrow, haematopoietic stem cell (HSC) entry into cycle, triggered by an increase in intracellular reactive oxygen species (ROS), corresponds to a critical metabolic switch from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). Here we show that loss of mitochondrial carrier homologue 2 (MTCH2) increases mitochondrial OXPHOS, triggering HSC and progenitor entry into cycle. Elevated OXPHOS is accompanied by an increase in mitochondrial size, increase in ATP and ROS levels, and protection from irradiation-induced apoptosis. In contrast, a phosphorylation-deficient mutant of BID, MTCH2's ligand, induces a similar increase in OXPHOS, but with higher ROS and reduced ATP levels, and is associated with hypersensitivity to irradiation. Thus, our results demonstrate that MTCH2 is a negative regulator of mitochondrial OXPHOS downstream of BID, indispensible in maintaining HSC homeostasis.
The role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2−/− ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2−/− and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs.
MTCH2 has been described in liver as a protein involved in the intrinsic apoptotic pathway, although new evidence also associates this protein with cellular metabolism. In this work, the expression of MTCH2 in testis (an organ in which high levels of apoptosis normally take place as part of the spermatogenic process) is analyzed in rat, both at the mRNA and at the protein levels. Our results showed that MTCH2 was highly expressed in testis compared with other tissues and was differentially expressed according to developmental stage and testicular cell type. Protein expression was initially detected during the first spermatogenic wave at the time of meiosis onset and its levels increased in adulthood, with the highest expression levels being detected in meiotic prophase I. Specific differences in MTCH2 expression levels at the various stages of the adult seminiferous epithelium were also observed. Co-staining with TUNEL revealed a differential MTCH2 staining pattern in TUNEL-positive cells, mainly in dying primary spermatocytes, i.e., meiotic prophase I cells. Furthermore, upon mild hyperthermia (treatment shown to increase apoptosis in testis), MTCH2 levels rose concomitantly with a massive appearance of TUNEL-positive cells within the seminiferous tubules; these cells exhibited a differential MTCH2 distribution. Thus, MTCH2 is related to testicular apoptosis, especially during meiotic prophase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.