Several efforts need to be performed in transportation and energy production to mitigate the current environmental issues that are related to fossil fuel use. The implementation of DC microgrids and the use of electric vehicles seem to be an adequate solution. However, various technical challenges have to be addressed, like grid stability issues. Thus, this case report assesses the impact of an electric vehicle load in a DC microgrid, subject to nonlinear control theory. The EV battery pack is modeled and simulated. Subsequently, it is included as a load in an available model of nonlinear control of DC microgrids. The results demonstrate high stability with this new load and the feasibility of its implementation.
In this paper, we discuss stochastic differential-algebraic equations (SDAEs) and the asymptotic stability assessment for such systems via Lyapunov exponents (LEs). We focus on index-1 SDAEs and their reformulation as ordinary stochastic differential equations (SDEs). Via ergodic theory, it is then feasible to analyze the LEs via the random dynamical system generated by the underlying SDEs. Once the existence of well-defined LEs is guaranteed, we proceed to the use of numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR decomposition-based numerical methods are implemented to compute the fundamental solution matrix and use it in the computation of the LEs. Important computational features of both methods are illustrated via numerical tests. Finally, the methods are applied to two applications from power systems engineering, including the single-machine infinite-bus (SMIB) power system model.
In this paper we discuss Stochastic Differential-Algebraic Equations (SDAEs) and the asymptotic stability assessment for such systems via Lyapunov exponents (LEs). We focus on index-one SDAEs and their reformulation as ordinary stochastic differential equation (SDE). Via ergodic theory it is then feasible to analyze the LEs via the random dynamical system generated by the underlying SDE. Once the existence of well-defined LEs is guaranteed, we proceed to the use of numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR decomposition-based numerical methods are implemented to compute the fundamental solution matrix and to use it in the computation of the LEs. Important computational features of both methods are illustrated via numerical tests. Finally, the methods are applied to two applications from power systems engineering, including the single-machine infinite-bus (SMIB) power system model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.