Aims/hypothesis IMT504 is an oligonucleotide that promotes tissue repair in bone injury and neuropathic pain models by stimulating progenitor cells. Here we evaluated the effect of IMT504 on the recovery of islet function in a streptozotocin (STZ)-induced model of diabetes in the rat. Methods Male Sprague-Dawley rats were injected with STZ (60 mg/kg, i.p., day1) or citrate buffer (Control). Animals with glycaemia between 11 and 20 mmol/l on day 4 were injected with IMT504 (4 mg/animal in saline, s.c., STZ-IMT504) or with saline (STZ-Saline) for 10 days. Glycaemia and water and food intake were recorded for 33 days. Intraperitoneal glucose tolerance tests (IPGTTs) were performed on day30. On day35, overnight-fasted animals were killed and blood samples and pancreases collected for hormonal and histological studies. A second group of STZ-IMT504 rats was killed, together with Control and STZ-Saline rats, after two consecutive days of blood glucose decreases after the beginning of IMT504 treatment. Pancreases were collected and proliferating cell nuclear antigen (PCNA), nestin and neurogenin 3 (NGN3) detected by immunohistochemistry. Results IMT504 greatly improved blood glucose and food and water intakes in STZ-IMT504 rats by day8, as well as IPGTTs on day30. Significant increases in islet number and beta cell content were observed in STZ-IMT504 rats (day 33). Furthermore, after two to five IMT504 injections, blood glucose decreased, and an increase in pancreatic nestin (mainly in endothelial cells), PCNA and NGN3 production (in islets) was observed in STZ-IMT504 rats. Conclusions/interpretation IMT504 induced a marked recovery of STZ-induced diabetes that correlated with early production of progenitor cell markers, such as nestin and NGN3.
IMT504 is a non-CpG 24-mer oligodeoxynucleotide (ODN) with immunomodulatory as well as tissue repair activity. IMT504 has been previously proven to be effective in animal models of vaccine potency, chronic lymphocytic leukemia, tissue regeneration, and sepsis. Here, we assessed the safety, including pharmacokinetics and toxicity studies in rats and monkeys, of IMT504 in a single-or repeated-dose administration by the subcutaneous (SC) or intravenous (IV) routes. In rats, the maximum tolerated dose was determined to be 50 mg/ kg when administered SC. Adverse effects at 50 mg/kg were mild and reversible liver injury, revealed as lobular inflammation, focal necrosis, and small changes in the transaminase profile. Dose-dependent splenomegaly and lymphoid hyperplasia, most probably associated with immune stimulation, were commonly observed. Rats and monkeys were also IV injected with a single dose of 10 or 3.5 mg/kg, and no adverse effects were observed. Rats injected IV with 10 mg/kg showed a transient increase in spleen weight, together with a slight increase in the marginal zone of the white pulp and in leukocyte count 2 days post-administration. In monkeys, this dosage caused slight changes in total serum complement and leukocyte count on day 14. No adverse effects were observed at 3.5 mg/kg IV in rats or monkeys. Therefore, this dose was defined as the ''no observed adverse effect level'' for this route. Furthermore, repeated-dose toxicity studies were performed in these species using 3.5 or 0.35 mg/kg/day IV for 6 weeks. A transient increase in the spleen and liver weight was observed at 3.5 mg/kg/day only in female rats. No changes in clotting time and activation of the alternative complement pathway were observed. The toxicity profile of IMT504 herein reported suggests a dose range in which IMT504 can be used safely in clinical trials.
Background: Rabies virus infection causes encephalitis, which is almost always fatal. Vaccination can be extremely effective at preventing disease but is prohibitively costly. Vaccine formulations allowing dose-sparing and fewer inoculations with faster antibody response would be extremely desirable. IMT504, an immunostimulatory non-CpG oligodeoxynucleotide, is a highly potent vaccine adjuvant. Methods: Human and rat antibody measurements, and rat challenge studies were performed. Results: In rats, highly effective immune responses with IMT504 were observed even after diluting vaccine up to 1/625. In highly lethal, live intracerebral rabies challenge studies, protection occurred even with extremely dilute vaccine plus IMT504. In humans, antibody titers developed faster and were significantly higher with IMT504-adjuvanted diluted vaccine vs non-adjuvanted vaccine (full strength or diluted). All five administered IMT504-adjuvanted diluted vaccine reached protective antibodies (≥0.5 IU/ml) after the second injection. After the third injection, individuals receiving IMT504-adjuvanted diluted vaccine reached levels approximately 10 times higher than controls (M ± SEM: 31.0 ± 10.9 vs 3.40 ± 0.99 IU/ml). Conclusions: These data suggest that IMT504 may allow fewer inoculations, highly significant dose-sparing of vaccine, rapid antibody production and protection from rabies. Extensive clinical studies are necessary to confirm if the use of IMT504 will permit significantly greater access to highly effective life-saving rabies vaccines.
Synthetic oligodeoxynucleotides (ODNs) are currently being evaluated as vaccine adjuvants for inducing protective immunity. As maternal vaccination is becoming increasingly common, the potential risk of vaccine formulation using ODN adjuvants should be warranted. A recent study performed in mice suggests that exposure to CpG motifs during pregnancy could result (although at very high doses as compared to the ones proposed for human vaccination) in fetal loss and morphological defects. PyNTTTTGT ODNs are immunostimulatory ODNs not bearing CpG motifs, which are very efficient vaccine adjuvants. In this report, we analyzed the potential teratogenic effect of its prototype IMT504 in rats. This animal model was chosen because PyNTTTTGT ODNs are barely active in mice. Intraperitoneal injection of IMT504 at a dose of 20 mg/kg (more than 1000 times higher than the one proposed for a vaccine dose in humans) at day 6 of pregnancy did not produce a significant decrease in the mean number of implanted fetuses or in the number of live pups delivered. Neither the fetuses nor the offspring presented malformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.